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1 | Introduction

This work concerns the implementation of a simple functional language
using the rules and techniques of lazy evaluation. Lazy evaluation is an eval-
uation strategy based on two principles:

• the evaluation of any expression is delayed until its value is needed
(non-strict evaluation);

• any expression will be evaluated at most once (sharing).

The lazy evaluation strategy works very well in a purely functional context:
both of its principles can be implemented without consequences if there
are no side effects to functions. Conversely, imperative languages are bet-
ter suited for eager evaluation, which is the polar opposite: expressions are
evaluated as soon as they are used and there’s no sharing, since these kind
of languages require a tighter control on the order and side effects of oper-
ations.

1.1 The case for lazy evaluation

Lazy evaluation seems a good practice in theory, but what advantages
does it bring to the programmer? The immediate answer is that lazy eval-
uation enables the handling of infinite data structures and streams: one can
build the (infinite) list of all the Fibonacci numbers with a simple recur-
sive function and then select the i-th, and a lazy language will compute
only the necessary steps (and only when necessary). Living in an era where
fast analysis of enormous quantities of information is crucial (the so-called
big data analysis), lazy languages can help obtain partial results faster since
they can output computed values before the entire operation has finished.
Other benefits may include a performance increase (due to avoiding need-
less computations) and a smaller memory footprint (since values are only
created when needed).

To make a real-world example, Facebook’s Sigma anti-malware engine
core is written in Haskell (a lazy functional language) and serves over one
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million requests per second1, identifying and blocking malicious actions
before they affect other people on the social network.

1.2 The case against lazy evaluation

Lazy evaluation comes at a price: execution speed. There seems to be
no avoiding this; creating, mantaining and working on the data structures
required for lazy evaluation introduce a big overhead, which may prevail
on the performance increases explained above; moreover, a careless manip-
ulation of infinite data structures can lead to serious space leaks. Some lan-
guages tried to reach a good middle-ground by having eager evaluation as
default, whilst having constructs that the programmer can use to explicitly
request lazy evaluation.

1.3 Introducing Haskell

Haskell is a strongly-typed, purely functional programming language
with non-strict semantics. Designed in 1990 (and revised many times) by a
committee to be the “open standard” for functional languages ([S. Peyton
Jones, 1992]), it follows the steps of Miranda and other proprietary, non-
strict functional languages that were popular at the end of the 1980s. The
standard implementation of Haskell is called GHC (Glasgow Haskell Com-
piler), noted for its high-performance concurrency and parallelism mecha-
nisms [S. Peyton Jones, 2007].

Being a purely functional language, functions written in Haskell do not
have side effects; these are handled with a special construct, called monad.
Thanks to monads, Haskell can support different kinds of computation like
nondeterminism, error handling and parsing.

For our purposes, we’ll use a very small subset of Haskell’s features:
we won’t talk about type-checking, monads, list comprehensions and many
other things. The aim is to show how a functional language can be imple-
mented, and which techniques to use for non-strict semantics.

1.4 Structure of this work

The first step towards our goal is to translate the Haskell code into an in-
termediate language, called λ-calculus, which will be introduced in chapter
2 and refined in chapter 3, where we will also show how to make the trans-
lation. Chapter 4 details how to mantain and manipulate expressions of the
λ-calculus in memory through a technique called graph reduction. Finally, in
chapter 5 we will discuss about a faster implementation of graph reduction
through the use of supercombinators.

1https://archive.is/NUsFz
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2 | The λ-calculus

2.1 Overview

In this chapter, we briefly introduce a formal system named λ-calculus.
Lambda calculus was first formulated by Alonzo Church ([Church, 1941])
and is nowadays used as a basis for functional programming languages; it’s
a simple language, with few syntactic constructs, but it’s sufficiently power-
ful to express all computable functions ([Turing, 1936]). The seminal work
on λ-calculus is [H. Barendregt, 1984].

2.2 A formal description of λ-calculus

We start by introducing a few useful definitions.

Definition 2.1 (Alphabet of the λ-calculus). The alphabet of the λ-calculus
consists of:

• a countably infinite set of variables x0, x1, ...;

• an abstractor λ;

• the two parentheses symbols ( and ). ■

Definition 2.2 (Set of λ-terms). The set of λ-terms (or terms of the λ-calculus)
Ter(λ) is defined inductively as follows:

1. a variable is a term, so x0, x1, …∈ Ter(λ);

2. if M,N ∈ Ter(λ), then (MN) ∈ Ter(λ);

3. if M ∈ Ter(λ) and x is a variable, then (λx .M) ∈ Ter(λ).

If we enrich the alphabet with a set of constants Γ (with α, β,…∈ Γ), we can
consider λ-terms over Γ. In that case, we change Ter(λ) into Ter(λΓ) in the
above clauses and add a fourth rule:

4. a constant is a term, so α, β,…∈ Ter(λΓ) (or, more concisely, Γ ⊆
Ter(λΓ)). ■
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The λ-calculus essentially gives a formalism to express anonymous (non-
named) functions; the λ-term (λx . x) is short for “the function which takes
a parameter x and returns x itself”. In the remainder of the chapter, w use
lowercase Latin letters for variables (x, y, z, a, b...), lowercase Greek letters
for constants (α, β, γ...) and uppercase Latin letters for arbitrary λ-terms
(M,N, L,P,Q, ...). Moreover, we call application terms all terms of the form
(MN), and abstraction terms all terms of the form (λx .M). The application is
a left-associative operation, i.e. MNPQ = ((MN)P)Q.

Definition 2.3 (Free variables). Let M be a λ-term. The set of free variables
occurring in M, FV(M) is defined inductively as follows:

1. for each variable x, FV(x) = { x };

2. FV(MN) = FV(M) ∪ FV(N);

3. FV(λx .M) = FV(M)− { x }.

We say that a variable x occurs free in M if x ∈ FV(M). Terms without free
variables are called closed terms or combinators; Ter0(λ) is the set of closed
terms. ■

Definition 2.4 (Subterms). Let M be a λ-term. The set of subterms of M,
Sub(M) is defined inductively as follows:

1. for each variable x, Sub(x) = { x };

2. Sub(MN) = Sub(M) ∪ Sub(N) ∪ {MN };

3. Sub(λx.M) = Sub(M) ∪ { x } ∪ { λx.M }.

A term N occurs in M, N ⊆ M, if N ∈ Sub(M). A variable x occurs bound in M
if (λx .N) ⊆ M for some term N. ■

Note that the terms “occurs free” and “occurs bound” refer to specific
occurrences of the variable in the λ-term: a variable can have both free and
bound occurrences in a λ-expression. For example, in (λy . x y (λx . x y z)) the
variable x occurs twice: free in λy . x y (. . . ) and bound in λx . x y z (for refer-
ence, y only appears bound and z only appears free).
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Definition 2.5 (Substitution). Let M, N be λ-terms and x be a variable such
that x ∈ FV(M) (i.e. x occurs free at least once in M). The substitution of N
for the free occurrences of x in M, M[N/x], is defined inductively as follows:

1. x[N/x] ≡ N;

2. y[N/x] ≡ y, for y ̸≡ x;

3. (M1M2)[N/x] ≡ (M1[N/x])(M2[N/x]);

4. (λy .M)[N/x] ≡ λy . (M[N/x]).

Note. M ≡ N denotes the fact that M and N are identical terms. ■
A substitution defined in this way can “break” the λ-expression, chang-

ing its semantics: for example, (λy . y x)[y/x] is a perfectly legal substitution
– at least according to our definitions – but in the result (λy . y y) the free
variable y (the one in [y/x]) is now bound by the λ-abstraction. Viceversa, in
(λy . y)[x/y] ≡ λy . x the substitution “unbinds” the variable in the body of the
λ-abstraction. To avoid such situations, we will assume that when writing
M[N/x]

• no free variables in N become bound after substitution in M, and

• the variable to be substituted x does not occur bound in M.

Both of those assumptions are reasonable; we can always find a suitable
renaming of the bound variables in M to achieve the same effect, as we’ll
show in section 2.3.3.

2.2.1 Pure and applied λ-calculus

So far, we’ve introduced λ-calculus in its purest form – there are only
variables, application terms and abstraction terms, and maybe constants;
this is indeed what Church envisioned in his works. There is no need of the
concept of number in the pure λ-calculus; the fundamental “block” is the
function, and with functions we can represent anything – even numbers.
One way to express them in the pure λ-calculus is with Church numerals,
a system in which numbers are represented with specific λ-abstractions:

• 0 is λs .λz . z (the argument s is applied to the argument z 0 times)

• 1 is λs .λz . s z (s is applied to z 1 time)

• 2 is λs .λz . s (s z) (s is applied to z 2 times)

and so on. It may be quite the verbose way to express numbers, but it works.
From there, we can (somewhat) easily build a successor function, which
takes a Church numeral and returns the succeeding numeral:
λm .λs .λz . s (msz).
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Example 2.1. The natural number 2 is represented by the Church numeral
λs . λz . s (s z); we apply the above function to obtain its successor:

(λm . λs . λz . s (ms z))(λs . λz . s (s z))

=⇒ λs . λz . s ((λs . λz . s (s z)) s z)

=⇒ λs . λz . s ((λz . s (s z)) z)

=⇒ λs . λz . s (s (s z)).

The result λs . λz . s (s (s z)) is the Church numeral representing 3, which is
the successor of 2; therefore our successor function is correct.
Note. In this example we implicitly used a simplifying rule (β-reduction)
that we’ll formally define in the next section. ▲

It’s not hard to see that the usual arithmetic functions (sum, product…)
are obtainable through these simple building blocks. For our purpose, how-
ever, the Church numerals notation is very inconvenient; in the remainder
of this work we will use a richer version of λ-calculus, named the applied
λ-calculus, which includes natural numbers as constants and some built-
in functions like + (in prefix notation) and even if. To further lighten the
notation, we’ll name functions and reuse the names inside terms; so, for
example, we can (and will) write λ-terms like

add2 := λx . (+ 2 x),

add4 := λx . (add2 (add2 x))
≡ λx . (+ 2 (+ 2 x)).

2.3 Operational Semantics of the λ-calculus

Now that we’ve defined what the λ-calculus is, we shall direct our at-
tention on how it works. In order to obtain some concrete result from a
λ-expression we need to evaluate it, a process with repeatedly selects a re-
ducible subexpression (a redex) and applies some kinds of transformations
to it. In this section we show how these transformations work.

2.3.1 Function Application

In the λ-calculus the function application is denoted by an application
term, so (a b) means “the function a applied to the argument b”. What about
having a function with several arguments, like (+ a b)? Instead of using a
different notation, say (+(a, b)), we can think of applying the function “in
steps”, one argument at a time: first we apply + to a, obtaining as a re-
sult a new function that takes one argument and adds a to it, then we ap-
ply this intermediate function to b. (It’s perfectly normal for a function of
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the λ-calculus to return a function as its result.) This way of thinking of
all functions as having only one argument was introduced by Schonfinkel
[Schönfinkel, 1924], and popularized by Curry [Curry and Feys, 1958], and
it’s known as currying.

2.3.2 β-conversion

We said that λ-abstractions denote functions; we can interpret appli-
cation terms of the form (λx .M)N, called β-redexes for reasons that will
become clear shortly, as the application of a certain function denoted by
(λx .M) to the argument N. We can informally say that the result of such
application is a λ-term whose body is an instance of M, in which all free oc-
currences of the formal parameter x are replaced with (copies of) the argu-
ment N. More formally, we can introduce a relation between two elements
of Ter(λ) which helps us evaluate β-redexes.

Definition 2.6 (β-reduction). The relation of β-reduction, →β⊆ Ter(λ) ×
Ter(λ), is defined by

→β= { ((λx .M)N, M[N/x]) | M, N ∈ Ter(λ) } . ■

Thanks to β-reduction, we can simplify λ-abstractions when they are ap-
plied to (at least some) arguments; (λx . + 3 x) 5 becomes (+35) and we can
use the built-in definition of + to obtain the final result, 8. Moreover, since
we require that the formal parameter be a free variable in the abstraction
body (see definition 2.5), we avoid troublesome situations that arise when
formal parameter names are not unique, as shown in this example.

Example 2.2. We want to reduce a λ-term defined as follows:

(λx . (λx . + (−x2))5x)7.

Applying our definitions of β-reduction and substitution, we substitute 7 in
all of the free occurrences of x in the abstraction body (λx . + (− x 2)) 5 x (i.e.
the underlined x) and obtain

(λx . + (− x 2)) 5 7

→β + (− 5 2) 7
= + 3 7

=10.
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Without the free occurrence requirement in the definition of substitution,
we could have gotten a simplification like

(λx . + (−72))57
→β + (− 7 2) 7
= + 5 7

=12

which is obviously a wrong reduction. ▲

In some cases, it’s useful to introduce a λ-abstraction where there wasn’t
one: this is possible using the β-reduction “backwards” like

(+ 2 1)←β (λx . + x 1) 2.

This operation is more formally called β-abstraction. When we want to show
that two λ-terms are obtainable from each other through β-reduction and
β-abstraction, we use the β-conversion symbol←→

β
:

(+ 2 1)←→
β

(λx . + x 1) 2.

We say that β-conversion is the equivalence relation generated by→β. Since the
other relations that we’ll introduce in this section are almost always used
in a symmetric way (like β-conversion), we use undecorated arrows← and
→ to express β-abstraction and β-reduction respectively. An undecorated
double arrow←→ will be used to denote zero or more conversions of any
kind.

2.3.3 α-conversion

Consider the two λ-terms

A := (λx . + x 1) B := (λy . + y 1).

According to what we have said, A and B are different (i.e. A ̸≡ B). It should
be clear, however, that their “effect” is the same when they are applied to
other λ-terms – they β-reduce to the same term, since all that differs be-
tween the two is just the name of the formal parameter. Luckily, λ-calculus
provides a relation between these “equivalent” terms which allows us to
change the parameter’s name at will, provided that the new name doesn’t
occur free in the body of the λ-abstraction.

Definition 2.7 (α-reduction). The relation of α-reduction, →α⊆ Ter(λ) ×
Ter(λ), is defined by

→α= { ((λx .M), (λy .M[y/x])) | y ̸∈ FV(λx .M) } . ■

8



The equivalence relation generated by →α is denoted by ←→
α

and it’s
called α-conversion; thanks to it, we can rename formal paramers at will.
Example 2.3. Let’s return to the troublesome λ-term we’ve shown in exam-
ple 2.2:

(λx . (λx . + (− x 2)) 5 x) 7.

Thanks to α-conversion, we can rename one of the formal parameters and
avoid any confusion before applying β-reduction:

(λx . (λx . + (− x 2)) 5 x) 7←→α (λy . (λx . + (−x2))5y)7. ▲
It should be clear that α-conversion’s only practical use is to avoid name

clashes like the one in the previous examples. Nevertheless, its use is some-
times essential.

2.3.4 η-conversion

We said that λ-terms in the same α-conversion equivalence class have
the same “effect” when applied to the same term; the λ-calculus has another
relation which induces a different equivalence class with the same property.
Consider the two expressions

A := (λx . + 5 x) B := (+ 5);

clearly A ̸≡ B and A ↚→
α

B, but both A and B reduce to the same term when
applied to the same argument.

Definition 2.8 (η-reduction). The relation of η-reduction, →η⊆ Ter(λ) ×
Ter(λ), is defined by

→η= { ((λx .Mx), (M)) | x ̸∈ FV(M) } . ■

Once again we consider the equivalence relation generated by→η, the
η-conversion ←→

η
. Thanks to η-conversion, we can remove unneeded λ-

abstractions from our terms: for example,

(λx . + 5 x)

←→
η

(+ 5)

and both terms evaluate to 10 when applied to the argument 5.

2.4 Recursion

Programs written in one of the many functional programming languages
vastly use recursion; λ-calculus, on the other hand, lacks it. It is possible,
though, to “convert” a recursive function into a λ-term that doesn’t use re-
cursion.
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2.4.1 The Y Function

Let’s take the poster child function for recursion: the factorial

n! =

{
1 if n= 0

n(n− 1) otherwise

rewritten to be more like our λ-terms:

FAC := λx . if (= x 0) 1 (∗ x (FAC (− x 1)))

At first glance, there’s nothing wrong with this expression; however, names
like FAC are just placeholders for the expressions they define, so it’s impos-
sible to reuse FAC in its very definition. (Think of our names like C macros.)
Let’s perform a β-abstraction to “bring out” the name:

FAC := λx . . . . (FAC (− x 1))

←FAC := λf . (λx . . . . (f (− x 1)))FAC

=FAC := HFAC

where H := λf . (λx . if (= x 0) 1 (∗ x (f (− x 1)))). If we forget for a moment
that things like FAC are names, we can draw a parallel between our expres-
sion FAC := HFAC and the mathematical notion of fixed point: x is a fixed
point of f if f(x) = x. (The fixed point isn’t necessarily unique.) In other
words, we can consider FAC as the fixed point of the function H, and this
fixed point depends only on H.

Imagine now having a nonrecursive λ-expression named Y, which rep-
resents a function that takes another function and returns its fixed point (a
fixed point combinator); we could apply it to H and obtain

YH

=H(YH)

since YH is a fixed point of H. Our factorial function is now simply written

FAC := YH;

to prove it, let’s show that FAC 5 = ∗ 5 (FAC 4).
FAC 5

=(YH) 5

=H (YH) 5

=λf . (λx . if (= x 0) 1 (∗ x (f (− x 1)))) (YH) 5

→λx . if (= x 0) 1 (∗ x ((YH) (− x 1))) 5

→ if (= 5 0) 1 (∗ x ((YH) (− 5 1)))
→ (∗ 5 ((YH) (− 5 1)))
→ (∗ 5 ((YH) 4))
= (∗ 5 (FAC 4))
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The good news is that Y exists and is indeed a nonrecursive λ-term, defined
as follows:

Y := (λf . (λx . f (x x)) (λx . f (x x))).

Let’s show that YH = H (YH) with this definition:

YH

=(λf . (λx . f (x x)) (λx . f (x x)))H

→ (λx .H (x x)) (λx .H (x x))

→H (λx .H (x x)) (λx .H (x x))

←H ((λf . (λx . f (x x)) (λx . f (x x)))H)

=H (YH).

It can be demonstrated that the fixed point generated by Y is the least fixed
point of the function [Stoy, 1981]. Altough this theoretical result is satisfac-
tory, implementing Y as a λ-abstraction is quite inefficient, so most imple-
mentations provide it as a built-in function.

2.5 Reduction order

An expression is fully evaluated when there are no more redexes; such
expressions are said to be in normal form. Evaluation is thus the process of
successively reducing redexes until the expression is in normal form; what
if an expression contains more than one redex? Reduction can proceed by
alternative routes:

(+(∗ 3 4) (∗ 7 8)) (+ (∗ 3 4) (∗ 7 8))
→ (+ 12 (∗78)) → (+ (∗ 3 4) 56)
→ (+ 12 56) → (+ 12 56)

→ 68 →68

Not every expression has a normal form; there are expressions whose eval-
uation doesn’t end. Consider the abstraction A := λx .xx and the expression
(AA). Let’s try to evaluate this last one:

AA

=(λx . x x) (λx . x x)

→ (λx . x x) (λx . x x)

=AA.

(AA) evaluates to itself, so it doesn’t have a normal form. This is analoguous
to an imperative program going into an infinite loop.
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2.5.1 Normal Order

There is another complication that arises with evaluation: for a given
expression, some reduction sequences may reach normal form while others
do not. For example, the expression

(λx . 1) (AA)

where A is the same term defined previously, evaluates to normal form only
if we eventually reduce the application of (λx . 1) to (AA); if we continue
reducing the application ofA toA – obtaining again (AA) as the argument for
(λx . 1) – we’ll never reach normal form. Fortunately, it isn’t possible for two
reduction sequences to lead to different normal forms; this is guaranteed by
the following theorem (and its corollary).

Theorem 2.1 (Church-Rosser I). If E1 ←→ E2 there exists an expression E such
that E1 → E and E2 → E.

Corollary. No expression can be reduced to two different normal forms, not con-
vertible through α-conversion.

We can informally say that, starting from the same expression, all re-
duction sequences which terminate will lead to the same result. A second
theorem, again by Church and Rosser, assures that for all expressions that
evaluate to a normal form there exists a particular reduction order which
guarantees that evaluation.

Theorem 2.2 (Church-Rosser II). If E1 → E2 and E2 is in normal form, there
exists a normal order reduction sequence from E1 to E2.

Definition 2.9 (Normal order reduction sequence). A reduction sequence
is said to be in normal order if at every step the redex selected for reduction
is the leftmost, outermost one. ■

Together, theorems 2.1 and 2.2 say that there is at most one possible re-
sult and that normal order reduction will surely find it. Furthermore, there
is no reduction sequence that can give a “wrong” result; the worst possible
scenario is nontermination. Note that normal order reduction doesn’t guar-
antee optimality; fortunately, for graph reduction – the representation for
expressions that we’ll develop in the following chapters – normal order is
“almost optimal”, i.e. it probably takes more time to find the optimal redex
than to use normal order. In the remainder of the work we’ll always use
normal order, for reasons that will become clear in section 4.2.

12



2.6 Denotational Semantics of the λ-calculus

Although the three conversion rules shown in the previous sections for-
mally define purely synctactic transformations on λ-expressions, the way we’ve
reasoned about them in terms of abstract functions allows us to use them as
rules for an operational semantics. To prove that λ-calculus is effectively a
good representation for abstract functions, we need to give a denotational
semantics for it, i.e. giving an eval function which assigns a value (or mean-
ing) to every expression of the language [Tennent, 1994].

2.6.1 Building the eval function

From a mathematical point of view, the eval function is a map from
expressions to values:

eval : expr→ val.

For example, we can write evalJ+ 1 2 K = 3; note that 3 is not “the λ-term
comprised only by the constant symbol 3” but the abstract numerical value
3. The argument of eval is enclosed by double square brackets, empha-
sizing the fact that it’s a purely synctactical object; we might say that in λ-
calculus the expression (+12) is a denotation of the value 3 (hence the name
denotational semantics).

In order to give a complete eval function, we need another ingredient.
Which is the value denoted by a variable x (i.e. evalJ x K)? The answer can’t
clearly be fixed, since the same variable can hold a value in one λ-term and
another value in a different one. We need to give the eval function some
more “contextual” information; namely, a function which maps variables
to values, the environment ρ. Thus, expressions with variables are evaluated
with the help of the environment:

evalρJ x K = ρ(x).

An environment can be extended with more bindings; this can be useful
when dealing with λ-abstractions. We use the following notation: given an
existing environment ρ, its extension with the binding a/x is

ρ[a/x](t) =

{
a if t = x

ρ(t) otherwise.

We can thus give the evaluation for a λ-abstraction when it’s applied to a
generic argument a:

evalρJ (λx .E) a K = evalρ[v/x]JE K
where v = evalρJ a K. This is coerent with our intuition that the value of a
λ-abstraction applied to an argument should be the value of the body in a
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context where the argument is bound to the formal parameter. That leaves
only the evaluation for application terms, which is simply

evalρJ (E1E2)K = (evalρJE1 K)(evalρJE2 K).
The way we’ve built the eval function has an important property: if E1 ←→
E2 then surely evalρJE1 K = evalρJE2 K. The reverse isn’t necessarily true.

2.6.2 The ⊥ value and strictness

One thing that we’re missing is a more specific description of the pos-
sible values which eval can produce; this collection is called a domain. A
domain includes all the functions and data values that can be denoted by
a λ-expression; that includes the domain’s own function space (i.e. func-
tions in the domain can be applied to themselves; this is required by the
self-application introduced in the λ-abstraction for Y). A complete study
on the theory behind domains is outside the scope of this work, and the
interested reader can find it in [Scott, 1982; Abramsky and Jung, 1994]; we
take the theory’s results for granted. We shall introduce just one important
value, which is the result of the evaluation of all the expressions that don’t
have a normal form: the ⊥ value (pronounced ‘bottom’). If E doesn’t have
a normal form (i.e. the evaluation of E doesn’t terminate), then we write
evalρJE K = ⊥.

The ⊥ value introduces a fair share of problems, and part of this work
concerns how to handle them. What if we have a λ-abstraction applied to a
non-terminating argument? Thinking outside the λ-calculus, what if we ap-
ply a function to the⊥ value? The answer is: it depends from the function. It
turns out that there are strict functions, which always return ⊥ when their
argument is ⊥, and non-strict functions, which may return a non-⊥ argu-
ment even when their argument is ⊥1; f(x) = x+3 is a strict function, while
g(x) = 2 is a non-strict one. Unless noted otherwise, we consider built-in
functions of our §ambdac as non-strict; for example, our AND returns false
when the first argument evaluates to false, skipping the evaluation of the
second argument altogether – so even if the second argument is ⊥ we ob-
tain false nevertheless.

1Functions that take more than one argument may be strict on some arguments and non-
strict on others.
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3 | Pattern Matching and the Enriched λ-calculus

3.1 Overview

Taking a step further towards a sufficiently powerful intermediate lan-
guage, we expand upon the foundations of the λ-calculus introduced in the
previous chapter. Since our goal is to translate a subset of the Haskell pro-
gramming language, we will introduce useful constructs for let expressions
and pattern matching; a λ-calculus with these constructs is called enriched
λ-calculus.

3.2 Pattern Matching

The term pattern matching refers to the act of checking if a given sequence
of tokens follows a precise pattern, and possibly binding some of these to-
kens into variables. Pattern matching is an useful component of functional
programming languages and it’s necessary to properly handle structured
data types.

3.2.1 Structured Data Types

Let’s suppose that our applied λ-calculus, defined in the previous chap-
ter, is able to express lists: it has the constant NIL, representing the empty
list, a function to check if a list is NIL (aptly named ISNIL), and the func-
tion CONSa b, representing the concatenation of item a to the list b1. Both
of them can be defined in pure λ-calculus (as shown in [S. L. Peyton Jones,
1987] or [Pierce, 2002], so their use in our applied λ-calculus is justified. It
turns out that NIL and CONS by themselves are pretty useless; it’s impossi-
ble to make even a simple TAIL function – that is, a function that removes

1In this work we won’t discuss about types beyond data structures. We will suppose
that functions are “properly” used, i.e. the second argument of CONS is always a list. The
interested reader can consult [S. L. Peyton Jones, 1987] for an introduction to type checking.
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the first element of the list – using only them.

TAIL := λx . if (ISNIL x)NIL (tail of x?)

The λ-calculus sees x as a monolithic block; it can check wherever x ISNIL,
but it cannot “see” how x is composed. If we could specify the structure of
the variables in λ-abstractions, the TAIL function would become

TAIL := λx . if (ISNIL x)NIL ((λ (CONS s t) . t) x)

Here, we say that if x is not NIL then surely is a CONS of two arguments, say
s and t, so we match the variable x into the pattern (CONS s t). Patterns will
be formally introduced in the next section.

Lists are a kind of structured type, a mechanism for defining new data
types in many functional languages. NIL and CONS are called constructors
of the type; NIL has arity 0 (it doesn’t take any argument), while CONS has
arity 2. For structured types, constructors – together with their arguments
– are what variables denote; the only way to “unpack” the arguments of
a constructor is through pattern matching. We use the standard Haskell
notation for defining new structured types2:

data List a = Nil | Cons a (List a)

This statement declares that a List (whose elements are of a generic type a)
is either a Nil or a Cons of an element and another List.

A general structured type T can be defined as follows:

data T = c1 T1,1 T1,2 . . . T1,r1

| c2 T2,1 T2,2 . . . T2,r2
| . . .
| cn Tn,1 Tn,2 . . . Tn,rn

where ci (1 ≤ i ≤ n) are the constructors, each of arity ri, and Ti,p (1 ≤ p ≤ ri)
are the types of the constructors’ arguments. In type theory, we say that the
type T is the sum (or discriminate union)

T = T1 + T2 + . . .+ Tn

where every Ti is a product

Ti = Ti,1 · Ti,2 · . . . · Ti,ri .

To better distinguish between the two cases, we call t the only constructor
of a product type (from tuple, the most common product type) and si the
i-th constructor of a sum type.

2Haskell – and many other functional languages – actually have a special, built-in way to
express lists and other commonly-used types such as tuples.
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3.2.2 Patterns in λ-abstractions

In the preceding section, in order to solve our problem of defining a TAIL
function, we intuitively introduced terms of the form (λp .E) where p is a
pattern. We now give a formal definition of patterns.

Definition 3.1 (Patterns). A pattern is either

• a variable x;

• a constant k (a number, a boolean, …);

• a constructor pattern of the form (c p1 . . . pr), where c is a constructor
of arity r and the pis are themselves patterns;

– a pattern of the form (s p1 . . . pr) where s is a sum constructor is
specifically called a sum pattern;

– conversely, a pattern of the form (t p1 . . . pr) where t is a product
constructor is called a product pattern. ■

Let’s return to the TAIL function: in Haskell we can write it as follows.

myTail Nil = Nil

myTail (Cons x xs) = xs

This is indeed how pattern matching works in this language; instead of hav-
ing an if to check if a list is Nil, we use multiple equations. When calling
myTail l, where l is a list, the language first tries to match l with Nil; if that
fails, it tries to match l with a generic Cons binding its arguments to x and
xs respectively. Since a list is either a Nil or a Cons, the matching is exhaus-
tive: we explored all possible cases. The general form for pattern matching
arguments of a function f in Haskell is

f p1 = E1

f p2 = E2

. . .

f pn = En.

When f is applied, its actual parameters get tested against the first pattern
p1: if there’s a match, the returned value is the evaluation of E1, else the
matching fails, the parameters get tested against p2 and so on. Obviously,
the matching can be non-exhaustive: if the pis don’t cover all the possible
values that the arguments of the function can take, the entire matching has
to fail with an error.
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The way Haskell manages pattern matching suggests how to handle it
in our enriched λ-calculus:

• a matching can fail, so we need a constant FAIL which is returned in
this case;

• if a matching has failed, we need a way to select the next equation; we
introduce the infix function 8 (pronounced ‘fatbar’), with the follow-
ing semantics:

a 8 b = a if a ̸= ⊥ and a ̸= FAIL

FAIL 8 b = b

⊥ 8 b = ⊥;

• if all the matchings have failed, we need another constant ERROR to
express failure for the entire operation.

With these additional tools, we can finally show the λ-term equivalent to
the Haskell code seen previously:

f := λx . ( ((λp′1 .E
′
1)x)8 ((λp′2 .E′
2)x)

. . .8 ((λp′n .E′
n) x)8ERROR ).

Here, p′i and E′
i are the result of translating respectively the pattern pi and

the expression Ei, and x is a new variable which doesn’t occur free in any of
the E′

is. We will discuss in a short while on how the actual translation from
Haskell to the λ-calculus is done.

That leaves only functions with multiple arguments, of the form

f p1 . . . pn = E

where the pis are patterns. Like before, it makes sense to translate the pat-
terns and use the translations with new variables:

f := λv1 . . . . λvn . (((λp′1 . . . . λp
′
n .E

′) v1 . . . vn) 8ERROR).
Let’s examine what happens when a matching – say, the i-th – fails. At the
end of the (i− 1)-th substitution, we have

(λp′i . . . . λp′n .E
′) ai . . . an
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where the aks are the actual parameters that are being matched. We pro-
ceed, and the i-th matching fails, so we have this strange result:

FAIL ai+1 . . . an

It turns out that an additional reduction rule is needed; if T is a λ-term, then

FAIL T→ FAIL.

With this rule we can end the evaluation of ((λp′1 . . . . λp′n .E′) v1 . . . vn)with
a single FAIL, so 8 selects ERROR as the final result.

3.2.3 Denotational semantics of pattern-matching λ-abstractions

In the previous chapter we gave a denotational semantics for the applied
λ-calculus; since we introduced a new type of λ-term – (λp .E), where p is
a pattern – we ought to extend the eval function to give values to the new
expressions that can be built using it. We proceed by cases, guided by the
definition of patterns given in section 3.2.2.

Variable Patterns

If the pattern p is made only by a variable v, the term (λp .E) is a plain
abstraction term, whose semantics have been discussed in section 2.6.1:

evalρJ (λp .E) a K = evalρJ (λv .E) a K.
Constant Patterns

A constant pattern of the form (λk .E), where k is a constant. Its seman-
tics is easy: either the argument of the application, say a, is equal to k, or it
isn’t. If the evaluation of a doesn’t terminate, neither should the evaluation
of the abstraction. The eval function is thus extended as follows:

evalρJ (λk .E) a K =

evalρJE K if evalρJ a K = evalρJ k K
FAIL if evalρJ a K ̸= evalρJ k K
⊥ if evalρJ a K = ⊥.

Sum Patterns

Sum patterns require a certain amount of attention. In order to evaluate
a term of the form ((λ (s p1 . . . pn) .E)A), we need to evaluate A first to see
“what kind” of object it is; at the same time, though, we want our evaluation
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to be lazy (i.e. non-strict), so we evaluate A only to its constructor form (we
don’t evaluate its arguments). The rule is:

• if evalρJA K = (s J a1 K . . . J an K), where the ais are syntactic objects rep-
resenting the unevaluated arguments of the constructor s,

evalρJ (λ (s p1 . . . pn) .E)A K = evalρJ (λp1 . . . . λpn .E) a1 . . . an K;
• if evalρJA K = (s′ . . .), where s ̸= s′,

evalρJ (λ (s p1 . . . pn) .E)A K = FAIL;

• if evalρJA K = ⊥,

evalρJ (λ (s p1 . . . pn) .E)A K = ⊥.
Product Patterns

When talking about product patterns, there’s no need to evaluate the
top-level of the argument A since there is only one constructor for the type
we’re considering3 – so, we don’t need to discriminate between multiple
constructors. This leads to two different ways to define the eval function
for product patterns: strict product matching, where A’s top-level is eval-
uated anyway, or lazy (non-strict) product matching, where we defer the
evaluation to a later time. The equation for lazy product matching is

evalρJ (λ (t p1 . . . pn) .E)A K = evalρJ (λp1 . . . . λpn .E) K (Eval-t-1A)
(Eval-t-2A)
. . .

(Eval-t-nA)

The Eval-t-i (where t is the type we’re considering) are auxiliary functions
defined as follows:

Eval-t-i (t x1 . . . xi . . . xr) =
{
ai if evalρJ xi K = ai
⊥ if evalρJ xi K = ⊥.

With lazy product-matching, the evaluation of the arguments of the abstrac-
tion can be postponed until necessary– in fact, in some cases, they will never
be evaluated.

3Again, we won’t talk about type-checking; we assume that the argument is always of
the “right” type, or ⊥ as the worst case.
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3.3 let and letrec expressions

One of the fundamental constructs in Haskell (and, indeed, in any other
functional language) is the definition, a way to bind variable names to values.
To simplify the translation from Haskell into λ-calculus, we add two types
of expression into the enriched λ-calculus: let and letrec.

3.3.1 Simple let-expressions

The first type of definition construct that we introduce is the simple let
(called “simple” by contrast with pattern-matching let).

Definition 3.2 (Simple let-expression). A simple let-expression has syntax

let v = B in E

where v is the bound variable, B is the definition body and v = B is the defini-
tion of the let. B and E are expressions in the enriched λ-calculus. The let
construct binds B to v, but only in the scope of E. ■

For practical purposes, we allow multiple definitions in the same let;
writing

let v = B

w = C

in E

is the same as writing let v = B in (let w = C in E).

3.3.2 Simple letrec-expressions

The term letrec is short for “let recursively”; simple letrec-expressions
are similar to simple let-expressions, save for the fact that all variables bound
by a letrec are in the scope of all its definition bodies, to allow recursion. A
simple letrec-expression has syntax

letrec v1 = E1
v2 = E2
. . .

vn = En
in E.
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3.3.3 Patterns in let(rec)-expressions

In simple let(rec)-expressions, the left-hand side of a definition is al-
ways a single variable; however, functional programming languages allow
patterns to be in the left-hand side of a definition.

let (Cons x xs) = myTail (Cons 2 (Cons 3 Nil))

in x

This Haskell code is perfectly valid and the result of the evaluation is 3 (the
head of the list returned by myTail). We want a similar behaviour for the
enriched λ-calculus, so we introduce pattern-matching let(rec)-expressions;
those expressions can have refutable or irrefutable patterns as the left-hand
side of definitions.

Definition 3.3 (Irrefutable patterns). A pattern p is irrefutable if it is

• either a variable v

• or a product pattern of the form (t p1p2 . . . pr) where the pis are ir-
refutable patterns.

Otherwise, p is said to be refutable. ■

let(rec)-expressions with irrefutable patterns are easier to manage: once
the argument has passed type-checking, the matching cannot fail. For this
reason, we treat irrefutable let(rec)s separately.

3.3.4 Irrefutable let-expressions

Irrefutable lets are of the form

let p = B in E

where p is an irrefutable pattern and B and E are expressions. Since many
implementations provide simple let(rec) as a built-in construct for efficiency
and type-checking reasons [S. L. Peyton Jones, 1987], we give a translation
rule from irrefutable lets to simple lets.

• If p is a single variable v, then the irrefutable let-expression is in fact a
simple let-expression:

let p = B in E ≡ let v = B in E if p = v.
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• If p is a product pattern (t p1 . . . pr), then we can use the auxiliary
functions Sel-t-i to translate the irrefutable let into a simple let:

let (t p1 . . . pr) = B in E ≡ let v = B

in (let p1 = Sel-t-1 v
p2 = Sel-t-2 v
. . .

pr = Sel-t-r v
in E)

The Sel-t-i functions are similar to the Eval-t-i ones, with the impor-
tant difference that the latter causes the evaluation of the i-th argu-
ment while the former just returns it.

Sel-t-i a =

{
xi if a = (t x1 . . . xi . . . xr)

⊥ if a = ⊥

The translation shown above is consistant the lazy product-matching
evaluation style.

3.3.5 Irrefutable letrec-expressions

Irrefutable letrecs are similar to their non-recursive cousins, but have to
account for the names to be in the scope of all the definition bodies. An ir-
refutable letrec-expression with a single definition it’s easily translated into
an equivalent irrefutable let-expression:

letrec p = B in E ≡ let p = Y (λp .B) in E.

For multiple definitions, we can come up with a shortcut: instead of dealing
with every definition separately, we can “pack” all the patterns in a single
product pattern (with a new product constructor tnew), and since all patterns
are irrefutable then the new product pattern will be irrefutable too.

letrec p1 = B1 ≡ letrec(tnew p1 . . . pn) = (tnew B1 . . . Bn) in E

p2 = B2
. . .

pn = Bn
in E

After this transformation, we can treat the resulting letrec-expression as a
normal single-definition letrec.
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3.3.6 General let(rec)-expressions

We’ve seen that irrefutable let(rec)-expressions are easy to treat; unfor-
tunately, even a single constant or sum sub-pattern in the left-hand side
of a definition makes the entire pattern (and thus the entire expression)
refutable. The problem with refutable patterns is that they can fail match-
ing; we should always check if the definition body conforms to the pattern
at the left-hand side of the definition. We can do this conformality check in
two moments:

• when the evaluation for the entire expression begins;

• on the first occasion where the pattern components are used.

The second approach is clearly the lazy one, so that’s the way we should
do it. We follow a similar approach to the one of section 3.3.5: we “pack”
the refutable pattern’s variables into a new, irrefutable product pattern that
will go on the left-hand side of the definition, moving the refutable portion
into the right-hand one. First of all, we should formally define the set of
variables occurring in a pattern.

Definition 3.4 (Set of variables of a pattern). For a given pattern p, its set of
variables Var(p) is defined as follows:

• if p is a variable v, then Var(p) = {v};

• if p is a constant k, then Var(p) = ∅;

• if p is a structured pattern (c p1 . . . pr), then

Var(p) = Var(p1) ∪ . . . ∪ Var(pr). ■

Definition 3.5 (Conformality transformation). Given a definition of the
form p = B (it doesn’t matter if in a let or in a letrec), where p is a refutable
pattern, we can apply a conformality transformation on it:

p = B ≡ (tnew v1 . . . vn) = ((λp . (tnew v1 . . . vn))B) 8ERROR
where {v1, . . . , vn} = Var(p) and tnew is a new product constructor of arity
n. ■

Thanks to the conformality transformation, we can translate general
let(rec)s into irrefutable let(rec)s.

3.3.7 Grammar for the enriched λ-calculus

With the introduction of let(rec) constructs, our enriched λ-calculus is
now complete. Its syntax can be defined by the following grammar.
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⟨Expr⟩ → ⟨Constant⟩ Constants
| ⟨Variable⟩ Variables
| ⟨Expr⟩ ⟨Expr⟩ Applications
| λ ⟨Pattern⟩ . ⟨Expr⟩ λ-abstractions
| ⟨Expr⟩ 8⟨Expr⟩ fatbar
| let ⟨DecList⟩ in ⟨Expr⟩ let-expressions
| letrec ⟨DecList⟩ in ⟨Expr⟩ letrec-expressions

⟨Dec⟩ → ⟨Pattern⟩ = ⟨Expr⟩ Definitions

⟨DecList⟩ → ⟨Dec⟩ | ⟨Dec⟩, ⟨DecList⟩ Multiple definitions

⟨Pattern⟩ → ⟨Constant⟩ Constant patterns
| ⟨Variable⟩ Variable patterns
| ⟨Constructor⟩ ⟨PatList⟩ Constructor patterns

⟨PatList⟩ → ⟨Pattern⟩ | ⟨Pattern⟩ ⟨PatList⟩ Constructor arguments

3.4 From Haskell to the enriched λ-calculus

Having all the ingredients set in place, we can finally begin to describe
how to translate a code written in (a subset of) Haskell into the enriched λ-
calculus we’ve introduced in this chapter. First of all, we define two transla-
tion schemes: one for definitions and one for expressions. After all, a Haskell
program can be viewed as a set of definitions needed to evaluate an expres-
sion:

Definition 1
Definition 2
…
Definition n

Expression

The expressions will be translated by a function Te (short for ‘Translate Ex-
pressions’) which takes a Haskell expression as its input and gives a λ-term
as its output, while definitions will likewise be translated by a function Td
(‘Translate Definitions’) which outputs definitions suitable for let(rec)s of
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the enriched λ-calculus. The outputs of these functions are used to build
the final letrec-expression4:

Haskell Defn 1
Haskell Defn 2

…
Haskell Defn n

Haskell Expr

λ-Defn 1
λ-Defn 2
…
λ-Defn n

λ-Expr

letrec λ-Defn 1
λ-Defn 2

…
λ-Defn n

in λ-Expr

Td

Te

3.4.1 The Te translation scheme

We already said that the translation scheme for expression will be im-
plemented as a function Te:

Haskell expression λ expressionTe

We’ll give a precise definition of Te analyzing every possible form of an
Haskell expression.

Constants

If the enriched λ-calculus contains the same set of constants as Haskell
(something that we take for granted), the translation of a constant is straight-
forward:

TeJ k K ≡ k.

Note that built-in functions (+, −, etc) are treated in the same way as con-
stants.

Variables

The rule for translating variable names (including user-defined construc-
tors and functions) is simple enough:

TeJ v K ≡ v.
4Since we don’t know if there’s recursion in the definitions, it’s safer to always stick with a

letrec-expression. This introduces a bigger overhead, so an optimization named dependency
analysis is used to discriminate wherever a letrec is necessary or it can be replaced with a
let. Dependency analysis is actually required for type-checking, and is described in [S. L.
Peyton Jones, 1987].
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Function application

In most cases, function application in Haskell is identical to the one of
the λ-calculus: a simple juxtaposition of expressions. In this case we have

TeJ E1 E2 K ≡ TeJ E1 K TeJ E2 K.
Some common operators (like the arithmetic ones) can be used infix. The
translation of expressions having (built-in) infix operators is

TeJ E1 infix E2 K ≡ TeJ infix K TeJ E1 K TeJ E2 K.
Furthermore, any user-defined function that takes two arguments can be
made infix in Haskell by surrounding its name with backticks (`fun`). This
case is easily taken care of:

TeJ E1 `fun` E2 K ≡ TeJ fun K TeJ E1 K TeJ E2 K.
Lists

Lists in Haskell have a special syntax: the “cons” constructor is an in-
fix operator, represented by the symbol :, while empty lists are denoted
by empty square brackets []. There’s another syntax for non-empty lists:
[a, b, c, ...], which is syntactic sugar for a:b:c:...:[]. The rules for
lists are:

TeJ : K ≡ CONS

TeJ [] K ≡ NIL

TeJ [E] K ≡ CONSTeJ E KNIL
TeJ [E1,E2, . . . ,En] K ≡ CONSTeJ E1 K TeJ [E2, . . . ,En] K.

Tuples

Like lists, tuples have a special syntax in Haskell: their elements are
written inside round brackets (), separated by commas. So, for example,
(a,b,c,d) is the 4-tuple composed by the elements a b c d. We need a trans-
lation rule for every possible n-tuple:

TeJ (E1,E2) K ≡ PAIRTeJ E1 K TeJ E2 K
TeJ (E1,E2,E3) K ≡ TRIPLETeJ E1 K TeJ E2 K TeJ E3 K

. . .

TeJ (E1, . . . ,En) K ≡ n-TUPLETeJ E1 K . . . TeJ En K

27



3.4.2 The Td translation scheme

Translating definitions is somewhat easier, since there are few cases and
a lot of the work has already been done when we introduced pattern-match-
ing (section 3.2).

Haskell definition λ definition
Td

Variable definitions

An Haskell definition like

v = 1 + 2

where v is a variable, can be translated easily: the variable retains its name,
while the right-hand expression is handled by the Te translation scheme.

TdJ v = E K ≡ v = TeJ E K
Pattern definitions

Definitions in which the left-hand side is a pattern are similar to variable
definitions, with the important caveat that the pattern has to be handled by
the Te translation scheme:

TdJ p = E K ≡ TeJ p K = TeJ E K
Simple function definitions

Functions in Haskell are translated with λ-abstractions, using Te to trans-
late the function body. Overall, it’s similar to the translation of a variable
definition.

TdJ f v1 . . . vn = E K ≡ f = λv1 . . . . λvn . TeJ E K
Pattern-matching function definitions

If the arguments of the function are patterns, we should handle the case
of a failed matching; the translation of the patterns is, as usual, handled by
Te. The general scheme is identical to the one we showed in section 3.2.

TdJ f p1 . . . pn = E K ≡
f = λv1 . . . . λvn . (((λTeJ p1 K. . . . λTeJ pn K.TeJ E K) v1 . . . vn)8ERROR)
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Multiple function definitions

Extending the previous definition to include multiple definitions is easy:

Td

uwwv
f p1,1 . . . p1,n = E1
f p2,1 . . . p2,n = E2
. . .

f pn,1 . . . pn,n = En

}��~ ≡

f = λv1 . . . . λvn . (((λTeJ p1,1 K. . . . λTeJ p1,n K.TeJ E1 K) v1 . . . vn)8 ((λTeJ p2,1 K. . . . λTeJ p2,n K.TeJ E2 K) v1 . . . vn)
. . .8 ((λTeJ pn,1 K. . . . λTeJ pn,n K.TeJ En K) v1 . . . vn)8ERROR)

where the vis are variables not free in any of the expressions Ej.

3.4.3 An example

Let’s try to translate the following Haskell program: a function that
takes a list of numbers and a number n, and outputs the sum of all elements
of the list multiplied by n.

sumN [] n = 0

sumN (x:xs) n = (x * n) + (sumN xs n)

sumN [1,2,3] 2
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Translating the definitions

Td
s

sumN [] n = 0
sumN(x : xs) n = (x ∗ n) + (sumN xs n)

{
≡
sumN = λv1 .λv2 . (((λTeJ [] K.λTeJ n K.TeJ 0 K) v1 v2)8 ((λTeJ (x : xs) K.λTeJ n K.

TeJ (x ∗ n) + (sumN xs n) K) v1 v2)8ERROR)
≡
sumN = λv1 .λv2 . (((λNIL . λn . 0) v1 v2)8 ((λ (CONS x xs) . λn .

+ TeJ (x ∗ n) K TeJ (sumN xs n) K) v1 v2)8ERROR)
≡
sumN = λv1 .λv2 . (((λNIL . λn . 0) v1 v2)8 ((λ (CONS x xs) . λn .

+ (∗TeJ x K TeJ n K) (TeJ sumN K TeJ xs K TeJ n K)) v1 v2)8ERROR)
≡
sumN = λv1 .λv2 . (((λNIL . λn . 0) v1 v2)8 ((λ (CONS x xs) . λn . (∗ x n) (sumNxs n)) v1 v2)8ERROR)

Translating the expression

TeJsumN [1,2,3] 2 K
≡

TeJ sumN K TeJ [1,2,3] K TeJ 2 K
≡

sumN (CONS 1TeJ[2,3] K) 2
≡

sumN (CONS 1 (CONS 2TeJ[3] K)) 2
≡

sumN (CONS 1 (CONS 2 (CONS 3NIL))) 2
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The final λ-expression

letrec

sumN = λv1 .λv2 . (((λNIL . λn . 0) v1 v2)8 ((λ (CONS x xs) . λn . (∗ x n) (sumNxs n)) v1 v2)8ERROR)
in

sumN (CONS 1 (CONS 2 (CONS 3NIL))) 2

3.5 From enriched to applied λ-calculus

The enriched λ-calculus that we introduced in this chapter is quite sim-
ilar to the applied λ-calculus of chapter 2: since we can consider the con-
stants FAIL and ERROR as part of the applied λ-calculus, the only new con-
structs are the 8 function, pattern-matching λ-abstractions and let(rec)-ex-
pressions. In this section we show how to translate those constructs into
equivalent expressions of the applied λ-calculus.

3.5.1 The 8 function

The 8 function we introduced in section 3.2.2 is infix; since functions in
applied λ-calculus are non-infix, the only step we have to take to translate8 is creating a new, non-infix function FATBAR:

FATBAR a b = a if a ̸= ⊥ and a ̸= FAIL

FATBARFAIL b = b

FATBAR⊥ b = ⊥.

With this “new” function, the translation is straightforward:

a 8 b ≡ FATBAR a b.

3.5.2 Pattern-matching λ-abstractions

If the pattern p in the abstraction (λp .E) is a variable, there’s nothing
to translate: the expression already belongs to the applied λ-calculus. The
other possible cases are when the pattern is a constant, a sum-constructor
or a product-constructor: we’ll treat those cases separately, guided by the
semantics of the eval function we defined previously.
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Constant patterns

In section 3.2.3 we defined the eval function for constant patterns in λ-
abstractions:

evalρJ (λk .E) a K =

evalρJE K if evalρJ a K = evalρJ k K
FAIL if evalρJ a K ̸= evalρJ k K
⊥ if evalρJ a K = ⊥.

We don’t care about⊥ values, since we’re only working on the syntax of the
expression; so, we only have to check if the argument is equal to k, and if
not we return FAIL. This can be done simply with the built-in if function:

((λk .E)A) ≡ ((λv . if (= k v)EFAIL)A)

where v is a new variable which doesn’t occur free in E.

Product-constructor patterns

The eval function for product patterns is:

evalρJ (λ (t p1 . . . pn) .E)A K = evalρJ (λp1 . . . . λpn .E) K (Eval-t-1A)
(Eval-t-2A)
. . .

(Eval-t-nA).

Since we’re manipulating syntactic objects, we don’t want the Eval-t-i func-
tions to evaluate our arguments; when using this semantics as a guide for
translating product-matching λ-abstractions, we use the similar Sel-t-i func-
tions introduced in section 3.3.4:

((λ (t p1 . . . pn) .E)A) ≡ (λp1 . . . . λpn .E)(Sel-t-1A)
. . .

(Sel-t-nA).

Notice that the right-hand side of the equation still has pattern-matching
λ-abstractions, but it has smaller patterns than the original expression; re-
peated applications of the rules of this section will eliminate them.

Sum-constructor patterns

The eval function for sum pattern was defined by cases: if the argument
A evaluates to a sum-constructor s with unevaluated arguments a1, . . . , ar
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then

evalρJ (λ (s p1 . . . pn) .E)A K = evalρJ (λp1 . . . . λpn .E) a1 . . . an K;
else

evalρJ (λ (s p1 . . . pn) .E)A K = FAIL.

The translation is simple:

((λ (s p1 . . . pn) .E)A) ≡

≡

{
(λp1 . . . . λpn .E) (a1 . . . an) if A = (s a1 . . . an)

FAIL if A = (s′ a1 . . . an), s ̸= s′

3.5.3 let(rec)-expressions

Since we’ve shown how to transpose every non-simple let and every
letrec into simple lets, a single rule for the latter satisfies our needs:

let v = B in E ≡ (λv .E)B.

As said before, many implementations provide at least the simple let as a
built-in construct in the target language, and other implementations actu-
ally delay the transformation of any let(rec)-expression for optimized type-
checking [S. L. Peyton Jones, 1987].
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4 | Graph Reduction

With the introduction of the enriched λ-calculus in the previous chap-
ter, we showed all the necessary steps to translate a Haskell program into a
λ-expression. In this chapter we introduce a way to represent these expres-
sions in the computer’s memory and how to work on this representation to
obtain the final result – an expression in normal form.

4.1 Graph representation

A λ-expression is a complex object, hard to store in memory while keep-
ing informations on its synctactic structure; it’s advisable to choose a repre-
sentation that’s easier to manage. In this work we use a graph, manipulat-
ing it to obtain the final expression in normal form through graph reduction
[Wadsworth, 1971; Keller and Hoevel, 1985].

As a starting point, we transform the λ-expression into its abstract syn-
tax tree (AST). All constants, variables and built-in functions are leaves of
the AST; the nodes are roots of subtrees which represent λ-terms, and are
labeled with special characters that help discriminate between application
and abstraction terms.

The application term (E1E2) is represented by the @ character:

@

E1 E2

Functions with multiple arguments explicitly use currying: (E1E2E3) be-
comes

@

@ E3

E1 E2
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The abstraction term (λx .E) is represented by a node that specifies the name
of the formal parameter, with the abstraction body as its child:

λx

E

The syntax tree built according to these rules will be manipulated by an
evaluator and transformed into a cyclic graph through successive reductions.
Before going into the detail of those reductions, we shall talk about a funda-
mental detail of evaluation: what is the next redex to be evaluated, and how
to select it. Different strategies will lead to different results, and we want to
follow the principles of lazy evaluation that we introduced in chapter 1:

• functions’ arguments should be evaluated when needed, not when the
function is applied;

• arguments should be evaluated once; further uses of the argument
within the same function should use the value computed the first time.

This style is also called call-by-need evaluation, in contrast with the call-by-
value employed by eager (non-lazy) languages.

4.2 Selection of the next redex

We already introduced, in chapter 2.5.1, a particular reduction order
which guarantees termination if the expression has a normal form: normal
order. It turns out that this reduction order is quite effective at guaranteeing
one of the principles of lazy evaluation1, namely the fact that arguments
should be evaluated only when needed, but – like every other reduction
order – it fully evaluates the expression until it is in normal form. This be-
haviour is entirely correct, but sometimes we want to stop evaluation while
the expression is only partially evaluated: think of sum-pattern matching,
when we want to check that an expression is built using a specific construc-
tor without having to evaluate all its arguments. In other words, we shall
fully evaluate only the top-level redex and stop at that, even if there may be
unevaluated inner redexes. An expression in which the top level has been
fully evaluated is said to be in weak head normal form2.

1It’s not the only reduction order that guarantees lazy evaluation: another one, described
in [H. P. Barendregt et al., 1987] and named innermost spine reduction, is equally effective, but
it’s harder to implement; for this reason, we’ll focus on normal order.

2There also exists a head normal form, which is largely equivalent to WHNF except that an
expression in HNF cannot have a λ-abstraction as the first argument of the top-level.
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Definition 4.1 (Weak head normal form). A λ-expression is said to be in
weak head normal form (WHNF) if and only if it is of the form

FE1E2 . . . En

where n≥ 0 and F is either:

• a variable

• a data object (a number, a CONS, …)

• a λ-abstraction (or built-in function), and FE1E2 . . . Em is not a redex
∀m ≤ n (i.e. it’s a function applied to too few arguments). ■

We can think of reduction as a two-step procedure: first we reduce all
the top-level redexes, bringing the expression in WHNF, then we reduce all
the inner redexes to obtain the normal form.

4.2.1 Finding the next top-level redex

Our λ-expressions all have the same general form f E1E2 . . . En, i.e. a
head f followed by n expressions Ei, represented by the following graph:

@

En…

@

E2@

E1f

There are various possibilities:

• f is a variable name; since f is a top-level, this variable occurs free in the
entire expression. Since with our translation it’s impossible to gener-
ate a non-bound variable, this is an error and we should report it;

• f is a data object (a number, a boolean, a CONS…). The expression
is in WHNF and the evaluation ends, provided that the number of
arguments n is zero; else, the data object is improperly applied to some
arguments, and this is a type error3;

3In fact, if the program is properly type-checked, this never happens.
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• f is a built-in function taking k arguments. If n < k, the expression
is in WHNF and the evaluation ends, else the next redex selected by
normal order is f E1E2 . . . Ek;

• f is a λ-abstraction. If there are no arguments (n = 0), the expression
is in WHNF and the evaluation ends, else the next redex selected by
normal order is f E1 (λ-abstractions are always applied one argument
at a time).

It’s easy to see that the simplest way to find the next redex is to descend the
left branch of the graph, stopping when a function is encountered. Then, we
try to go back up m nodes, where m is dependant on the nature of f (m = 1
if f is a λ-abstraction, m = k if it’s a built-in function taking k arguments);
if we encounter the root of the entire graph before the end of the climb, the
expression is in weak head normal form and we stop.

4.3 Graph reduction of λ-expressions

Having found the next redex, we can finally begin the proper reduc-
tion: a local transformation of the graph (at this time, an abstract syntax tree)
we built in section 4.1, which successively modifies the graph itself until it
reaches the final result of the computation. We’ve seen in the previous sec-
tion that the expression, not being in WHNF, has either a λ-abstraction or a
built-in function as its top-level: we will handle the two cases separately.

4.3.1 Reducing the application of λ-abstractions

If the top-level is a λ-abstraction and there’s at least an application node
in the graph, we can perform a β-reduction:

(λx.B)E→β B[E/x]

@

λx

B

E
→β

B[E/x]

Operationally, we must instantiate (i.e. create a new copy of) the body
of the abstraction B, substituting the occurrences of the formal parameter
x with the argument E. This operation may be tricky, so we’ll follow three
principles:

• since the argument E can be big and/or include further redexes, in-
stead of copying it into the nodes previously occupied by the formal
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parameter x we will substitute pointers to it. In this way we reduce the
complexity and assure that any redex in E is evaluated only once;

• the redex node may be shared, so we must put the result in that same
node (physically overwriting the previous content);

• the λ-abstraction may be shared with other nodes, so we should create
a new copy of the body and then use this new copy as the recipient for
the substitution. Note that this doesn’t contradict the previous point:
if the redex is the λ-abstraction, we “detach” the abstraction node and
“attach” a copy of its body, then we substitute the argument to the
parameter in the copy overwriting the node.

An implementation that follows these principles is called lazy graph reduc-
tion.

Substituting pointers

When substituting the argument for the formal parameter, we can sim-
ply copy the argument wherever the formal parameter occurs in the body.
This is the simplest way, and a reduction done in this way is called tree re-
duction; however, there are important disadvantages in this approach:

• if the argument is a very large expression and/or there are many oc-
currences of the formal parameter, we waste a large amount of space
making multiple copies of the same object;

• if the argument contains redexes, we do unneeded work duplicating
them and having to reduce them separately; this is also against the
principle of lazy evaluation.

Both of these problems are solved if we instead substitute any formal param-
eter occurrence with a pointer to the argument; this effectively transforms
the abstract syntax tree into a proper graph, since many pointers can point
to the same node (sharing). For example, the term
+(DOUBLE 4) (DOUBLE 4) is represented in this way:

@

@

4DOUBLE

@

+
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Overwriting the root of the redex

To properly utilize sharing we must ensure that, when an expression
is reduced, the graph is modified to reflect the result; in this way, every
expression is evaluated at most once. To achieve this, we simply overwrite
the root of the redex with (the root of) the result: in this way we assure that
every pointer that pointed to the expression now points to the result. For
example, in the previous figure the next redex to reduce is DOUBLE 4 (since
+ requires its arguments to be evaluated), whose root is marked by a $, and
after the evaluation is completed the result is written into the same node.

@

@ $

4DOUBLE

@

+
→

@

8 $

4DOUBLE

@

+

Note that other parts of the redex (in this case, the nodes DOUBLE and
4) are not affected by the overwriting; they are simply detached from this
part of the graph, but we cannot reuse them since we don’t know if they are
shared. We assume that there’s a garbage collector that removes unrefer-
enced nodes, so we won’t draw them anymore.

Instantiating the body

As discussed before, when dealing with a λ-abstraction we should make
a new copy of the abstraction body and apply the argument’s substitution
to the copy; this is done in case the abstraction is shared between more than
one expression. This makes the λ-abstraction node a sort of “template” from
which a new instance is constructed every time it is applied. An expression
like (λx .NOTx)TRUE is reduced as follows:

@

TRUEλx

$

#

@

xNOT

→

@

TRUEλx

@

xNOTx

@

λx

NOT

$

# →

→

@

TRUENOT

x

@

λx

NOT

$

#
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Here, the original λ-abstraction node is tagged with # to emphasize that
what gets reduced is its copy.

To better describe the instantiation process, we’ll introduce a recursive
function Instantiate(Body,Variable,Value), which copies Body substituting
Value for the free occurrences of Variable:

Instantiate(Body,Variable,Value) = Body[Value/Variable]

The Instantiate function is defined by case analysis:

1. if Body is a variable x and Variable = x, then return Value (we’re sub-
stituting a single occurrence of Variable);

2. if Body is a variable x and Variable ̸= x, then return Body;

3. if Body is a constant (including built-in function names), then return
Body;

4. if Body is an application term E1E2, return the application

(Instantiate(E1,Variable,Value) Instantiate(E2,Variable,Value));

5. if Body is a λ-abstraction (λx .E) and Variable = x, return Body (since
the new λ-abstraction binds the variable x anew, so no substitution
will occur inside it);

6. if Body is a λ-abstraction (λx .E) and Variable ̸= x, return

λx . Instantiate(E,Variable,Value);

we must instantiate the λ-abstraction in case there are occurrences of
Variable inside it.

This Instantiate function is pretty efficient, but there’s an hidden risk: if
there isn’t any free occurrence of Variable in Body, we may end up doing un-
necessary work (see cases 4 and 6) and copying expressions when we could
share them. Checking for a new clause at the beginning of the Instantiate
process could suffice:

0. if Body does not contain any free occurrence of Variable, return Body.

It turns out that this check is quite expensive to make; an implementation
that does it (or something to the same effect) is called fully lazy. In the fol-
lowing chapter we’ll see a way to obtain the same result in a different way.
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4.3.2 Reducing the application of built-in functions

If the redex is a built-in function and there are enough arguments, we
should first evaluate the necessary arguments (which ones are necessary de-
pends from the function itself), calling the evaluator recursively; then we
can apply the built-in function, and overwrite the root with the result. The
following example shows the reduction of a built-in function application.

Example 4.1. Consider the expression ∗ 2 (+ 1 5), represented by the graph

@

@

5@

1+

@

2∗

$

#

The evaluator first goes down the left side of the graph, encountering ∗ as
the next function to apply; then it goes back up and selects $ as the root of
the redex. The built-in function ∗ requires that its arguments are evaluated;
the evaluator recursively calls itself on the left application node, only to
discover that the first argument is already in WHNF, then calls itself on the
right application node (marked with #). This is a redex, so again it calls itself
on the two arguments of + (which are in WHNF) and then applies it:

@

6

5@

1+

@

2∗

$

#

Now both arguments of the ∗ function are fully evaluated, so we can apply
the function and obtain the final result:

12

6

5@

1+

@

2∗

$

#

▲
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4.3.3 Implementing the Y function

In section 2.4.1 we said that implementing the Y function as a λ-abstrac-
tion is inefficient and that we’re better implementing it directly. Here we
show a very simple way to do this operation:

@

f

$

Y →
@$

f

This reduction directly corresponds to the reduction rule for Y:
Y f → f (Y f). This is the only source of cycles for our graphs, and this im-
plementation of Y is thus called cyclic Y or knot-tying Y. Thanks to it, we can
manage recursive functions and infinite data structures without having to
allocate a new cell each time the (Y f) redex is evaluated.
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5 | Supercombinators and λ-lifting

In the last chapter we introduced an useful representation of a λ-expres-
sion in memory, in the form of a graph, and described how to reduce this
graph in order to obtain the final result of the evaluation. We saw that the
trickiest part, the one that can cause a massive overhead in the process, was
the application of a λ-abstraction to an argument: we had to instantiate the
abstraction body, making a new copy of it through a recursive function
called Instantiate that analyzed every node and selected its behaviour ac-
cordingly.

5.1 Compilation

We come up with a better alternative: what if we could compile the ab-
straction body to a fixed set of instructions of the target language? The instan-
tiation process will then amount to simply obeying the instructions associ-
ated with the body. All the tests previously made by Instantiate recursively
would now be done just once, when compiling the λ-body, and we could
further optimize the compilation through known techniques in this field.

As it turns out, this wonderful idea has one problem: not every λ-ab-
straction body can be compiled. For example, consider the expression

λx . (λy . + x y),

whose body is (λy . + x y). When applying the whole abstraction to a sin-
gle argument, say 1, the body gets instantiated as (λy . + 1y); change the
argument, and the instantiated body changes too – it’s clearly impossible
to compile a single fixed sequence for this λ-abstraction. The problem is
that x occurs free in the body of the λy abstraction, so we have to make a
new instance of the latter wherever x gets bound to a different value by the
λx abstraction; if we had no free variables in the body we could compile it
without hassle.

There are two approaches to solving this problem. We could give an
environment to the compiled code, allowing it to access the values of free
variables in the body (parameterizing the compiled code on them); this is the
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route followed by all the block-structured languages (like C, Java, …). Alter-
natively, we could transform the program into an equivalent one in which
all λ-abstractions are compilable; this approach does not require an envi-
ronment and it’s called supercombinator graph reduction, while the transfor-
mation algorithm is called λ-lifting.

5.2 Supercombinators

In section 2.2 we introduced combinators as λ-terms without free vari-
ables. We now introduce a subset of combinators, called supercombinators.

Definition 5.1 (Supercombinators). A λ-expression of the form

λx1 .λx2 . . . . λxn .E,

where E is not a λ-abstraction, is called a supercombinator $S of arity n if and
only if

• $S has no free variables;

• n≥ 0 (there need be no λs at all);

• any λ-abstraction is E is a supercombinator. ■

Definition 5.2 (Supercombinator redexes and reduction). A supercombina-
tion redex is the application of a supercombinator of arity n to exactly n argu-
ments. Supercombinator reduction is the act of replacing a supercombinator
redex by an instance of the supercombinator body, with the arguments sub-
stituted for free occurrences of the corresponding formal parameter. ■

Supercombinators of arity 0 are called constant applicative forms or CAFs.
Since they don’t have any λ-abstractions, they are never instantiated and
can be safely shared in the graph; they don’t need to be compiled. Super-
combinators of arity n > 0 will be our unit of compilation: they have no
free variables, so we can compile a fixed code sequence for them, and any
abstraction in their body will be a supercombinator, thus having no free
variables too and not requiring a copy when instantiating the supercombi-
nator body.

5.2.1 A smarter β-reduction

Why are supercombinators amenable to compilation? The answer is that
they can be the subject of a “multi-argument” reduction when they are ap-
plied to the right amount of parameters: take the term of the previous exam-
ple λx . (λy . + x y), applying it to two arguments (say 1 and 2). The normal

44



reduction introduced in section 2.3.2 would proceed like this:

(λx . (λy . + x y)) 1 2

→β (λy . + 1 y) 2

→β + 1 2.

However, there’s no reason we couldn’t apply both arguments at once, per-
forming the λx and λy reduction simultaneously: the result of performing
the λx abstraction alone is a λy abstraction, and no further work can be done
on it until it is given the second argument, hence we could wait until both
arguments are present and then perform both reductions at once:

(λx . (λy . + x y)) 1 2

→ + 1 2.

This multi-argument reduction is possible only when applied to supercom-
binators; in fact, this is simply what we defined as supercombinator reduc-
tion.

In the rest of the chapter, we will name supercombinators prepending
an $ to their name: moreover, we’ll use a special notation to emphasize their
special status. The supercombinator λx . (λy . + x y) then becomes

$SUP x y = + x y

where $SUP is an arbitrary name. Our strategy will be to transform the
λ-expression we wish to compile into a set of supercombinator definitions
plus a (simpler) expression to be evaluated:

$SUP x y = + x y

$SUP 1 2

is how we translate the term (λx . (λy . + xy))12. Since supercombinator
reduction occurs only when all arguments are available, we can regard the
supercombinator definitions as a set of rewrite rules: a reduction consists of
rewriting an expression which matches the left-hand side of a rule with an
instance of the corresponding right-hand side. These kinds of systems are
called term rewriting systems [TERESE, 2001].

5.2.2 λ-lifting

We can now describe an algorithm that transforms λ-abstractions into
supercombinators.
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Algorithm 1 λ-lifting
1: while there are untranslated λ-abstractions do
2: choose a λ-abstraction a which has no inner λ-abstractions in its body
3: perform β-abstraction on a to take out all its free variables as extra parameters
4: give an arbitrary name to the a, like $NAME
5: replace the occurrence of a with the name applied to the free variables
6: compile the abstraction body and associate the name with the compiled code
7: end while

Example 5.1. Let’s try to translate (λx . (λy . + y x) x) 4 with the λ-lifting al-
gorithm. The starting point is

(λx . (λy . + yx)x)4

The first step is selecting a λ-abstraction which doesn’t have further λ-ab-
stractions in its body. The only one here that meets the requirement is (λy .+
yx), which has x as a free variable. The second step is to “bring out” the x
as an extra parameter:

(λy . + y x) ←β (λx . λy . + y x) x ←→
α

(λw . λy . + yw) x.

(We used α-conversion to give a different name to the parameter, to avoid
confusion.) The expression (λw . λy . + yw) is now a supercombinator, and
we can substitute it into the original term:

(λx . (λw . λy . + yw) x x) 4

The third and fourth steps require us to give a name to this new supercom-
binator and substitute it to the occurrence in the expression:

$Ywy = +yw

(λx . $Y x x) 4

The fifth step is to compile the body of $Y. This will be discussed later, but
for now let’s imagine having a very simple C-like procedure:

compiled-Y(w,y) {

return (y + w);

}
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Wherever $Y is applied to two arguments, the evaluation will simply be the
execution of the procedure compiled-Y. One cycle of the λ-lifting argument
is now done. Next, we select λx . $Y x x as the next λ-abstraction: it doesn’t
have any free variable, so it’s already a supercombinator. We give a name
to this supercombinator and substitute it in the expression:

$Yw y = + yw
$X x = $Y x x

$X 4

The compiled code for $X is:

compiled-X(x) {

return compiled-Y(x,x);

}

Finally, we notice that $X 4 is a supercombinator too (of arity zero). We per-
form a final λ-lifting cycle:

$Ywy = +yw
$X x = $Y x x
$Program= $X 4

$Program

where the compiled code for the supercombinator $Program is simply

compiled-Program() {

return compiled-X(4);

}

When the evaluator has to evaluate the λ-term $Program, it will simply call
the compiled-Program() procedure, which will return 8. ▲

5.2.3 Eliminating redundant parameters

While executing the λ-lifting algorithm, redundant definitions or defi-
nitions with redundant parameters may show up. Redundant definitions
are of the form $A = $B; we can eliminate them by using directly $B wher-
ever $A appears. Redundant parameters show up in definitions of the form
$Cb = $Dab, and are easily taken care of through η-reduction: $C = $Da.
Note that this last optimization is actually undesirable when using some
sophisticated implementations.
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5.2.4 Parameter ordering

When we take out several free variables from a single λ-abstraction, the
order in which we put them can be actually important. For example, the
expression (λx . λz .+ y (∗ x z)) can be translated in two seemingly equivalent
ways:

$S x y z = + y (∗ x z)

(λx . $S x y)

$S y x z = + y (∗ x z)

(λx . $S y x)

Since the $S supercombinator “takes care” of putting the parameters in
the right order in the combined code, we may think that the two forms are
indeed equivalent. If we continue with the algorithm, lifting the λx abstrac-
tion, we see an important difference:

$S x y z = + y (∗ x z)
$T y x = $S x y

($T y)

$S y x z = + y (∗ x z)
$T y x = $S y x

($T y)

Both forms of the $S supercombinator lead to the same result, the in-
troduction of a new supercombinator $T, but the right one can be further
reduced: through two η-conversions we obtain $T = $S, so $T is actually
redundant and we can write the bottom expression of the right-hand box
simply as ($S y). We can’t do the same with the left-hand box because $T y x
and $S x y are not η-convertible, so it seems that there’s a ‘preferred’ order:
we should put the variables bound at inner levels last. We could number
every abstraction, starting from 0 at the top-level and increasing with every
layer of abstraction, and then order the variables according to the number
of the abstraction which generated them.

Definition 5.3 (de Bruijn numbers). The de Bruijn number (or lexical level-
number) of a λ-abstraction is the number of textually enclosing λs plus 1. ■

For example, in λx . λy . + x y the λx abstraction has de Bruijn num-
ber 1 while the λy abstraction has de Bruijn number 2 (is enclosed by the
λx). The lexical level of a variable is then equal to the de Bruijn number
of the λ-abstraction which binds it, with constants, built-in functions and
previously-defined supercombinators regarded as being bound at the top-
level and having thus lexical level 0. Every time we generate an extra pa-
rameter (second step of the λ-lifting algorithm) we simply have to put it into
a position compatible with its level; in this way we maximize the chances
of being able to apply η-reduction to supercombinator definitions.
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5.2.5 The case for recursive supercombinators

In section 3.3.5 we proposed a simple way to treat recursive definitions:
we pack mutually recursive definitions into a single tuple, then use the Y
function to eliminate recursion and obtain a simple let. This is quite ineffi-
cient: every time we have to build a tuple just to have it taken apart slightly
later. Moreover, with supercombinators we introduced a way to actually
name λ-abstractions, so they can refer to themselves.

To obtain better performances we avoid using the Y function completely,
having a set of mutually recursive supercombinator definitions in its place.
Obviously, when translating the Haskell code we shouldn’t actually fully
reduce the enriched λ-calculus down to the applied λ-calculus; we want to
stop when all the definitions are expressed with simple let(rec) constructs
(in other words, we don’t want to translate simple letrecs into simple lets,
nor we want to translate simple lets into λ-abstractions). As a final note, we
observe that the supercombinator notation

$S1 x y= B1
$S2 f= B2
…

E

is equivalent to the letrec notation:

letrec

$S1= λx . λy .B1

$S2= λf .B2

. . .

in

E

5.2.6 let(rec)s in supercombinator bodies

In the previous chapter we introduced graph reduction: starting from
the tree representation of a λ-expression, we used a set of rules to transform
that tree into a cyclic, directed graph with node sharing like this one:
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What’s the textual representation for this graph? The trick is to name
nodes, as we did here, and express the graph thus:

a = c b

b= c 3

c = f b

with a as the root node. This is, in fact, just a letrec:

letrec

a = c b

b= c 3

c = f b

in

a.

We just gave another definition for the letrec construct: it’s a textual de-
scription of a graph. If a supercombinator has a letrec inside its body, then
its body is a graph; these kinds of supercombinators are said to have graph-
ical bodies. In a similar way, the bodies of supercombinators can contain
let-expression: in this case, the represented graph is acyclic.

A supercombinator with a graphical body has an important property:
its instantiation is simply a matter of constructing the graph associated with
the body, which can then be reduced using the rules we’ve seen in the pre-
vious chapter. This is precisely the kind of compilation we missed in previ-
ous sections; other types of supercombinator compilation can be found in
[Keller and Hoevel, 1985] and [S. Peyton Jones, 1992], the latter being the
strategy used by the Haskell language.

5.2.7 λ-lifting and letrecs

The good news is that the λ-lifting doesn’t need any modification to
work with recursive supercombinators: letrecs are treated just like any other
expression, and the actual lifting still applies only to λ-abstractions. We
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need only to take care of which lexical level-number to assign to variables
bound in a letrec: since they will be instantiated when the immediately enclos-
ing λ-abstraction is applied to an argument (which is also the time when the
letrec is instantiated), it makes sense to assign the same lexical level-number
as the immediately enclosing abstraction.

If there’s no enclosing λ-abstractions, the definition bodies of the letrec
cannot have any free variable other than the ones defined in the same letrec:
in other words, they’re combinators, and we can λ-lift them to remove inner
λs and turn them into supercombinators. For example, the program that
computes the infinite list composed only by 1s is a letrec

letrec x = CONS 1 x in x

that can be lifted to

$x = CONS 1 $x

$x

5.3 Fully lazy λ-lifting

There’s a further, important optimization that we can do to our imple-
mentation of λ-lifting to make it even lazier than the one we described ear-
lier. We said in section 4.3.1 that, when instantiating an abstraction, we risk
copying the same constant expression over and over rather than sharing a
single copy of it: this is needlessly time- and space-consuming, but it’s hard
to spot these cases even with compilation given that those sharable expres-
sions can be generated during reduction.

Example 5.2. Let’s try to evaluate the expression

letrec f= g 4

g = λx . λy . + y (sqrt x)

in + (f 1) (f 2).
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In the following reduction we use the character # to represent a pointer to a
shared expression.

+ (f 1) (f 2)

→ + (# 1) (# 2) # : (λx . λy . + y (sqrt x)) 4

→ + (# 1) (# 2) # : (λy . + y (sqrt 4))

→ + (# 1) (+ 2 (sqrt4)) # : (λy . + y (sqrt 4))

→ + (# 1) 4 # :(λy . + y (sqrt 4))

→ + (+ 1 (sqrt4)) 4

→ + 3 4

→7.

We can clearly see that sqrt 4 (here underlined) is evaluated twice, since a
new instance of it is made each time the λy is applied; sqrt 4 is a dynamically
created constant subexpression of the abstraction body. Translating the letrec
into a supercombinator won’t suffice:

$g x y = + y (sqrt x)
$f= g 4
$Prog = +($f1) ($f2)

$Prog

$Prog

→ + (# 1) (# 2) # : $g 4

→ + (# 1) (+ 2 (sqrt4)) # : $g 4

→ + (# 1) 4 # :$g 4

→ + (+ 1 (sqrt4)) 4

→ + 3 4

→7

▲
To be as lazy as possible we want to share even this dynamically created

constant expressions: we want to evaluate every expression at most once, to
obtain what is called full laziness.

5.3.1 Maximal Free Expressions

We discovered that instantiating “too much” of a λ-expression can make
us lose full laziness; we shouldn’t instantiate those subexpressions which
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contains no occurrences of the parameter, because if the parameter doesn’t
occur then the value of the subexpression is the same throughout all in-
stances.

Definition 5.4 (Proper subexpressions). An expression E is a proper subex-
pression of a λ-abstraction F if and only if E is a subexpression of F and
E ̸= F. ■

Definition 5.5 (Maximal free expressions). A subexpression E of a λ-
abstraction L is free in L if all variables in E are free in L. A maximal free
expression (MFE) of L is a free expression which is not a proper subexpres-
sion of any other free expression of L. ■

An MFE is exactly what can be shared throughout multiple instances of
a λ-abstraction in order to retain full laziness. When performing β-reduction
we must not instantiate an MFE: we just substitute pointers to the single
shared instance in the body of the abstraction.

Example 5.3. Without reducing MFEs, the evaluation of the expression of
the previous example goes like this. The first steps are the same:

+ (f 1) (f 2)

→ + (# 1) (# 2) # : (λx . λy . + y (sqrt x)) 4

→ + (# 1) (# 2) # : (λy . + y (sqrt 4)).

Now the evaluator recognizes (sqrt 4) as a MFE and substitutes a pointer to
the abstraction body:

→ + (# 1) (+ 2#1) # : (λy . + y#1), #1 : (sqrt4)

→ + (# 1) (+ 2#1) # : (λy . + y#1), #1 : 2

→ + (# 1) 4 # :(λy . + y#1), #1 : 2

→ + (+ 1#1)4 #1 :2

→ + 3 4

→7

hereby evaluating (sqrt4) just once. ▲

5.3.2 MFEs and λ-lifting

Identifying maximal free expressions dynamically is rather difficult to
do efficiently. [Hughes, 1983] proposed a slight modification to the λ-lifting
algorithm that suffices to preserve full laziness:

• instead of abstracting out free variables of a λ-abstraction (step 2 of
the algorithm, section 5.2.2), abstract out entire maximal free expressions
as extra parameters.
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If this step is performed, we call the resulting algorithm fully lazy λ-lifting. In
the previous example, instead of abstracting (λy . + y (sqrt x)) in the normal
way (which would have led us to g x y = + y (sqrt x)) we bring out the entire
MFE (sqrt x) as an extra parameter:

$g1 e y = + y e

$g x = $g1 (sqrt x)

Fully lazy λ-lifting slightly increases the complexity of the final expression
(there are more supercombinator definitions than before), but the trade-off
is a fully lazy evaluation. A slight optimization that can be made is recog-
nizing if an expression has no free variables (a CAF): in that case, instead of
abstracting it out as an extra parameter, it can be given a name and made
into a supercombinator.

When dealing with recursive expressions, the same problem arises with
MFEs defined inside letrecs: they will not be lifted out as free expressions.
The solution lies in reworking the let(rec) definitions by “floating” out them
as far as possible: a variable x bound in a let(rec) will (generally) depend
on the value of certain free variables (x’s free variable set), so we can float the
definition of x outwards until the next enclosing λ-abstraction binds one
of the variables in its free variable set. Any definition with an empty free
variable set will be lifted to the top-level, where it will be turned into a su-
percombinator directly ([S. L. Peyton Jones and Lester, 1991]).
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6 | Conclusions

This short work has been useful for me to understand the inner work-
ings of a computation paradigm that’s quite different from those I’ve stud-
ied throughout the three-year undergraduate course. While I came to real-
ize that, due to the overhead that it introduces, lazy evaluation is seldom
necessary, I think that there are many application fields that would surely
benefit from its use.

6.1 Future works

A lot has been left out in this work for the sake of simplicity and to fo-
cus on proper lazy evaluation: we said next to nothing on types and type
checking, gave no attention to list comprehensions (a special syntax for lists
in Haskell), and completely ignored advanced Haskell features like mon-
ads and type classes; since most production-level software written in this
language (like Facebook’s Sigma) make use of these features, it would be
helpful to show how they are handled.

For almost all topics there’s some sort of further optimization to be made;
for example, our translation for product-types make use of different Eval-t-i
functions for every type t, which is prohibitively complex when program-
mers can define their own types; we could do better by adding a structure
tag, identical for all types, which can be used by the Eval-i functions to se-
lect the i-th argument regardless of the actual type. Other improvements
can be made using dependency analysis to remove unneeded letrecs (see
sec. 3.4), or eliminating redundant full laziness after an application of the
lazy λ-lifting algorithm.

We didn’t discuss possible alternative approaches to supercombinator
graph reduction; [S. L. Peyton Jones, 1987] has an interesting digression on
the use of the SK supercombinators. Moreover, the actual implementation
of supercombinator graph reduction has not been discussed at all; it can be
made using a high-level language like C and Java to be fully portable, or
one can choose a lower-level implementation to obtain better performance.

These points can all be addressed in a future work that aims for com-
pleteness.
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