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Chapter 1

Introduction

Writing parallel software, even in its simplest form, is harder than writing se-
quential software. The amount of details that need to be taken into account is
much higher, and traditional programming languages are for the most part de-
signed for sequential programs. In these languages, support for parallel com-
putations is not a central focus and is often limited to a set of basic mechanisms
for spawning and synchronizing parallel executors.

More recently, however, parallel computing has started to become a central
element of the technological landscape. Commodity processors feature lower
operating frequencies and an increasing number of cores with respect to the
ones available ten years ago [52]. GPUs, which feature a high number of com-
puting units that can only perform basic arithmetic operations, are increasingly
used as coprocessors to accelerate heavy numerical algorithms [15, 44]. Smart
devices run on low-power multicore SoCs (often equipped with small GPUs)
that greatly benefit from a balanced computational load [58]. The ability to
write good parallel code is therefore becoming a basic tool in a programmer’s
arsenal.

We believe that there are two fundamental ingredients in efficient parallel
programs: a clear design of the computation to be performed and a suitable
and efficient framework for its implementation. The role of the second in-
gredient is often played by libraries and APIs paired with existing sequential
languages. One such example is FastFlow, a C++ library developed at Uni-
versity of Pisa and University of Torino [3], which provides the programmer
with easy-to-use mechanisms for the design and implementation of parallel
programs.

Designing the parallel algorithm is not an easy task either. One can start
assuming virtually no limitations on what a parallel computer can do, i.e. to
have infinite processing elements and infinite memory without concerns to
regulations of concurrent accesses. The algorithms designed under these as-
sumptions, however, cannot be directly implemented “as-is”, since the actual
hardware does have limitations.

The Bulk Synchronous Parallel paradigm was introduced by Leslie G. Valiant
in the late 1980s as a model with realistic limitations on parallel hardware fea-
tures [61]. BSP algorithms are divided in supersteps: every processing element
must wait that its peers complete the current superstep before advancing the
computation to the next one. Moreover, while communications with other pro-



cessing elements can be scheduled at any time, they actually only take place
after the end of the superstep. Together, these two constraints impose a “su-
perstructure” to parallel computations, which makes it easier to reason about
the effects of operations.

The BSP model has not been widely adopted, at least in comparison to other
parallel models like PRAM and dataflow, until recent times. For a long while
its use was limited to resolution of numerical problems and niche interests in
theoretical computer science. Since the early 2010s, however, the BSP model
got a “second life” having been adopted in Google Pregel [36], a framework
for distributed large-scale graph computing, due to its clear and effective pro-
gramming style and performance model. Nowadays, it is implemented in a
number of frameworks for both distributed (Apache Hama [7], Apache Gi-
raph [6]) and parallel (MulticoreBSP [67, 66], Bulk [16]) computing.

We believe that BSP is a good model for designing efficient parallel algo-
rithms. Its role as a “bridging model” also allows for direct execution of those
algorithms on a suitable runtime support, therefore freeing the programmer
from having to adapt them to specific frameworks’ programming models. Un-
fortunately, there are few BSP implementations that offer modern features like
automatic memory management on multicore, shared memory architectures.
Therefore, we considered implementing a BSP library that offers the above-
mentioned modern features, with an API that is simple to use and a run-time
support that frees users from menial tasks like having to register shared vari-
ables. We chose FastFlow as the underlying framework due to its easy-to-use
algorithmic skeletons and its compositional capabilities. Since the BSP pattern
is not currently provided by FastFlow, we also decided to make the library a
fully-featured FastFlow component, able to be used inside a broader computa-
tion.

The objective of this work therefore consists in the design and implementa-
tion of a modern C++ parallel programming library providing the BSP model
on top of and within the FastFlow framework. The library will target shared-
memory multicore machines. We want to provide programmers with an easy-
to-use interface that allows them to design and code efficient BSP programs.
Our implementation will fully support the object-oriented paradigm and will
relieve the programmer from the burden of having to manually manage mem-
ory and shared variables. The library has been designed to be

¢ fully BSP compliant — existing BSP algorithms must be able to be easily
ported to our library, and

e fully FastFlow compliant — the whole BSP computation will act as a
single FastFlow parallel component, thus being able to become part of a
broader FastFlow structured computation; it will receive input data from
other FastFlow nodes and send output data to other FastFlow nodes.

The library will be itself implemented as a FastFlow graph, therefore exploiting
the framework’s compositional capabilities. This fact has helped in the imple-
mentation design phase, as solutions based on different algorithmic skeletons
for the library could be considered and prototyped quickly without having to
change the internal structure of the nodes.

Our work started with an in-depth study of the state of the art, in the form
of both theoretical advancements and practical implementations, to better un-



derstand the BSP model and its scope. After coming up with an initial draft, we
carried on both the architectural and implementation design at the same time,
one aspect influencing the other. Of course, this meant going through multiple
revisions of the library, from a rough prototype — which aggressively enforced
type correctness between a superstep’s output and its successor’s input — up to
the final version presented in this thesis (Figure 1.1), sporting good scalability
as well as highly expressive API and a run-time support that relieves the user
from burdens like memory management and variable registration. We took
inspiration for some of the features from “competitors”, mainly MulticoreBSP
for Java, but ultimately we designed both the implementation structure and
the API from scratch. Lastly, we performed extensive tests for both correctness
and performance of our implementation, achieving good results for the latter.

Implementation structure Lo A

,,,,,,,,,,,,,,,,

Architectural design

Rough draft Refinements Final version

Figure 1.1: Workflow for the design and implementation of the library.

The rest of the thesis is organized as follows.

* Chapter 2 provides the reader with the necessary concepts used through-
out the work. The theory behind the Bulk Synchronous Parallel model is
laid out, together with the relevant definitions and theorems that help
frame the model into the bigger picture of parallel programming. The
FastFlow framework is also introduced, together with its main features,
to provide familiarity with some of the terminology and mechanisms pre-
sented in the rest of the thesis. A brief digression on a memory allocation
strategy provided by FastFlow and used in the library closes the Chapter.

¢ Chapter 3 introduces the architectural model of our implementation. This
model is composed by various entities: the design of each entity is dis-
cussed, along with a description of how it fits and behaves inside the
architecture.

® Chapter 4 presents an overview of the library’s implementation. Each
class is described in depth, focusing on its peculiarities and relation with
respect to the entities of Chapter 3. Extensive code snippets detailing the
main portions of the implementation are also provided and discussed.

* Chapter 5 contains the experimental results from the various test pro-
grams we implemented. The testing methodology and machine architec-
ture are detailed at the start of the Chapter. For each test program we de-
fine the communication scheme and input distribution, then we provide



and discuss perfomance plots confronting the results obtained from our
library with the corresponding MulticoreBSP for Java implementation.

Chapter 6 draws the conclusions relative to the whole work. The experi-
mental outcomes are once again commented, and an outline for possible
future works is provided.

Appendix A contains the documentation for the library API, together
with some clarifications about advanced mechanisms such as direct ac-
cess methods.

Appendix B contains the source code for the library and for the test pro-
grams. The source code is also available at [41].

10



Chapter 2

Background

This Chapter provides the reader with basic concepts relative the Bulk Syn-
chronous Parallel (BSP) paradigm. The BSP model has been designed in the
late 1980s to overcome the limitations of the PRAM model. BSP divides a pro-
gram in a series of supersteps that contain both computation performed by
a number of processing elements and communication between them. Each
superstep is separated from the others by means of a global synchronization
(e.g. barrier). Recent developments on the paradigm (e.g. MultiBSP, Multi-
coreBSP) are touched upon.
An overview of the FastFlow framework closes the Chapter.

2.1 The Bulk Synchronous Parallel model

The Bulk Synchronous Parallel model was introduced by Leslie G. Valiant in
1990 [61] as a “bridging model” for distributed computing. Valiant considered
the main reason for the “success” and ubiquity of the sequential computation
the availability of a central unifying model, the Von Neumann computer. This
unified view serves as a connecting bridge between software and hardware:
software developers can focus on writing programs that run efficiently on it —
abstracting from the complexities of the hardware. Conversely, hardware de-
signers only have to realize efficient Von Neumann machines, without having
to mind about the software that will be executed on them. Valiant thought that
—1in order to obtain a widespread adoption of distributed computing —a model
with a similar purposes as Von Neumann'’s one for sequential computation was
needed; he then introduced the BSP model as a viable candidate for this role.

NOTE. Valiant’s original article actually references parallel computing, hence
the name Bulk Synchronous Parallel; nevertheless, it was written at a time when
the predominant source of parallelism derived from the exploitation of an in-
terconnection of processing elements, each with its own private memory and
lacking a global clock or synchronization, in which data is exchanged by mes-
sages sent and received via the network — i.e. what is called today a “dis-
tributed architecture” [50]. (In fact, Valiant even mentions implementations of
a BSP computer based on optical crossbars or packet-switched networks, rein-
forcing this concept.) Throughout the remainder of this text we will refer to

11



Synchronization Facility

LM LM LM

Node 1 Node 2 Node p

|

Communication Component

Figure 2.1: The architecture of a generic BSPC.

the modern-day definition of parallel computing (i.e. a single system with multi-
ple processors and cores, with a shared memory and global clock), so Valiant’s
original BSP article will be treated as referencing a distributed architecture.

2.1.1 The BSP Computer

The BSP model defines — along the lines of the Von Neumann model — an ab-
stract Bulk Synchronous Parallel Computer, or BSPC for short. A BSPC is the
combination of three attributes:

1. a number of nodes for performing processing and memory operations;

2. acommunication component that delivers point-to-point messages between
nodes;

3. asynchronization facility that coordinates the behavior of the nodes.

A BSP computation consists in a sequence of supersteps. During a super-
step, each node performs a task consisting of local computation and message
sending primitives. The superstep ends when all nodes finish their task. The
synchronization facility is the entity responsible for checking this condition.
Animportant feature of this mechanism is that the effect of any communication
primitive performed during a superstep will take place only during the succes-
sive superstep, i.e. the communication between nodes actually takes place at
the end of the superstep.

The way the synchronization facility works has an impact on the perfor-
mance of a BSPC. First, we define the following.

Definition 2.1. A time unit is the time spent by a node performing a single
operation over data available in its local memory.

Definition 2.2 (Periodicity of a BSPC). The periodicity L of a BSPC is the number
of time units in the interval between two consecutive checks of the “superstep
ended” condition.

12



Superstep (i -1) Superstep i Superstep (i +1)

Computation Communication Computation Communication Computation

Figure 2.2: The superstep flow of a BSP computation.

In other words, the synchronization facility checks that the current super-
step has ended every L time units. This definition is purposefully vague, since
no assumption is made on how the synchronization facility actually works.
For example, if the system can continuously check whether a superstep is com-
pleted, then L can be defined as the number of time units needed to perform the
check itself. The periodicity concept also brings two interesting consequences:

* L is the minimum effective duration of a superstep (i.e. a superstep that
theoretically completes in less than L time units will actually behave like
a superstep that completes in L time units);

¢ the maximum efficiency for a BSPC of periodicity L can be achieved with
a program that perfectly balances tasks in such a way that, in every su-
perstep, every node completes its task in exactly L time units.

Depending on the synchronization facility, some portion of the periodicity
L can be overlapped with local computations. In this case, with [ we refer to
the non-overlapping time interval of the periodicity.

The task executed by each node in a given superstep can be further divided
into three distinct portions: the input phase, the local computation phase and the
output phase. In the input phase, a node receives data in its local memory; then,
some local computation is performed over this data; in the output phase, the
node sends some data to other nodes. This functional partition of a task allows
us to define more useful parameters for a BSPC.

Definition 2.3 (Local computation cost for a superstep). Let i be a superstep.
The local computation cost w; is the maximum number of local operations per-
formed by any node during superstep i. In other words, let w;; be the number
of local operations performed by node j during superstep i. Then we define

w; = max wlj (2.1)
]

13



NOTE. Since we defined the time unit to be the time to perform a single
operation it also holds that, for superstep i, w; is the time spent in the local
computation phase.

Definition 2.4 (Number of data units sent and received). Let hgj and h;]’ be

respectively the number of data units received and sent by node j during su-
perstep i. We define the maximum number of received data units during i as

hi = max hj; (2.2)
]

and the maximum number of sent data units during i as

hi’ = maxhj. (2.3)
]

Definition 2.5 (h-relation). Let i be a superstep. The total data units exchanged
during this superstep by a generic node j is defined as

hij = h;] + I’l;; (2.4)

The maximum data units exchanged during superstep i is called the h-relation
of i and is defined as

]
Sometimes it is also useful to define the maximum h-relation for a BSP program

as
h = maxh;. (2.6)
1

We said before that the communication component is the entity responsible
for delivering point-to-point messages (carrying data) between nodes. Without
loss of generality, we can assume that this component will take a fixed amount
of time to delivery a single data unit after reaching steady state.

Definition 2.6. Let s be the startup time of the communication component,
i.e. the time needed to reach steady state, and g be its basic throughput when in
continuous use, i.e. the time spent in delivering a single unit of data at steady
state. Then, for superstep i, the communication component will take gh; + s
units of time.

From this definition it follows that in order to achieve optimality we need
$h; to be at least of the same order of magnitude as s, i.e.

gh; > s. 2.7)

This condition is required, otherwise a lot of time is “wasted” in the startup
phase of the communication component. This suggests a way to simplify the
cost model.

Definition 2.7 (Gap of a BSPC). Let g = 2g. Then, it holds
ghi = 2gh; > gh; +s (2.8)

where the second inequality comes from equation 2.7. The parameter g is called
gap or communication throughput ratio of a BSPC.

14



We now have all the necessary ingredients for a basilar cost model for a
BSPC.

Definition 2.8 (Cost model for a superstep). Let i be a superstep. Then, the
cost for i (i.e. time spent in this superstep) can be modeled by the following
equation:

;i =w;+ghi + 1. (2.9)
Definition 2.9 (Cost model for a BSP program). Let S be the number of super-

steps of a BSP program. Then, the total time spent executing the program can
be modeled by the following equation:

S

S S S
c:Zci:Z(wi—f—ghi—i—l):Zwi—i—gZhi—i—S-l. (2.10)
i=1 i=1 i=1 i=1

If we define . s
W = Z w; H= Z hi
i=1 1
then equation 2.10 can be simplified as
c=W+g-H+S-1 (2.11)

where W is called the total local computation cost, H the total communication cost
and S the total synchronization cost.

Lastly, we define when a BSP program is balanced.

Definition 2.10 (Balanced BSP computation). Let p be the number of nodes
of a BSPC. We define the local computation volume VV as the total number of
local operations executed during the whole program. Similarly, we define the
communication volume H as the total number of data units transferred between
all nodes during the whole program. If both following conditions hold:

W=0W/p) H=0(H/p) (2.12)
then the BSP program is said to be balanced.

2.1.2 Towards an object-oriented shared memory BSP

The aim of this work is to develop a BSP implementation which focuses on
objects as the atomic unit of data, designed for multicore shared-memory single
machines. This scenario introduces its own set of complexities and challenges
that have been tackled throughout the years by different people. This section
presents the main concepts behind the most relevant adaptations of the BSP
model for a shared-memory architecture.

PRAM simulations and the BSPRAM model

In Valiant’s original article [61], particular emphasis was placed in providing
an efficient way to simulate PRAM algorithms on a BSPC. The PRAM model
was introduced in [64] as a way to design parallel algorithms and perform
quantitative analyses on their performance, in a similar manner to Von Neu-
mann’s RAM. The PRAM model relied on a set of simplifying assumptions,
namely
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® any processor can access any location of the shared memory uniformly
(i.e. with the same cost of access)

e there is no resource contention between processors.

A PRAM is categorized according to the strategy it uses to resolve read /write
conflicts in memory:

¢ if a memory location can be accessed only by a processor at a time, re-
gardless if it is a read or a write, then the PRAM is said to be EREW
(Exclusive Read, Exclusive Write);

¢ if a single processor can write in a memory location at a given time, but
multiple processors can read from it simultaneously, then the PRAM is
said to be CREW (Concurrent Read, Exclusive Write);

e if multiple processors can read and write in a memory location at a time,
then the PRAM is said to be CRCW (Concurrent Read, Concurrent Write).!

In [59] it is shown that PRAM algorithms can be efficiently simulated on
a BSPC?; the single shared memory of a PRAM is implemented in a BSPC by
mapping its memory positions to local memories of BSP nodes according to a
hashing function. The simulation is optimal provided that the PRAM has more
processors than the BSPC.

Definition 2.11. A model M can optimally simulate a model N if there exist a
transformation that maps any problem with cost T(#) on N to a problem with
cost O(T(n)) on M.

Definition 2.12. Let p be the number of nodes of a BSPC. A PRAM algorithm
is said to have slackness o if at least cp PRAM processors perform a memory
operation (read or write) at every step.

A PRAM algorithm with slackness ¢ has at least op processors that commu-
nicate at each step. A simulation of this PRAM algorithm on a BSPC with p
nodes means that at least o processors are mapped to each BSP node. In or-
der to achieve an optimal simulation, some constraints must be put on o, as
showed by the following theorem.

Theorem 2.1. Suppose to have a BSPC with p nodes, with g constant (not depending
on p or the problem size, i.e. § = O(1)) and | = O(c). This BSPC can optimally
simulate

o any EREW PRAM algorithm with slackness o > log p
* any CRCW PRAM algorithm with slackness o > p€, with e > 0.

The interested reader can find the proof of this theorem in [59].

In [55] Tiskin proposed a BSP model for shared memory systems, which
replaced the communication network with a shared memory component; this
allowed for the exploiting of data locality, something that was not possible with
the original BSP model. Tiskin called his model BSPRAM,; the architecture for
a BSPRAM is shown in Figure 2.3.

I The Exclusive Read, Concurrent Write (ERCW) strategy is never considered.
2The paper shows a PRAM simulation on a XPRAM, which is a simple BSPC.
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Figure 2.3: The BSPRAM architecture.

As with a standard BSPC, a BSPRAM has p processors (nodes) that per-
form operations on data in their local memory, a synchronization facility and
a communication component, which in this case is a shared memory unit. By
adapting slightly the definition of h-relation as the maximum data units read or
written into the shared memory, the same basic cost model of equation 2.9 can be
used. The BSPRAM supersteps differ a little from standard BSP supersteps: in
the latter model, the input phase was mostly a “passive” one, since the commu-
nication component wrote data directly into the nodes’ local memories; com-
munication could be essentially considered concluded when the output phase
ended. In the BSPRAM, instead, nodes must actively read from the shared
memory in the input phase, so the three phases of a superstep are more dis-
tinct (Figure 2.4).

Superstep (i -1) Superstep i Superstep (i +1)

Computation Output Input Computation Output Input Computation
Communication Communication

Figure 2.4: The superstep flow of a BSPRAM computation.
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As Valiant did for PRAM algorithms, Tiskin proved that BSPRAM pro-
grams could be optimally simulated onto a “classical” BSPC. First, he defined
the slackness parameter for BSPCs.

Definition 2.13. A BSP or BSPRAM algorithm is said to have slackness ¢ if for
any superstep i it holds
ghi > 0o (2.13)

i.e. the communication cost for any superstep is at least ¢.
The following theorem directly mirrors Theorem 2.1.

Theorem 2.2. An optimal simulation on a BSPC with parameters p, g, | can be achieved
for

o any algorithm designed for a BSPRAM with EREW strateqy and parameters
p, 8,1, that has slackness o > log p

* any algorithm designed for a BSPRAM with CRCW strategy and parameters
p, 8,1, that has slackness o > p¢, with € > 0.

Another important property of a BSPRAM is that it can optimally simulate
generic BSP algorithms that have at least a certain level of slackness.

Theorem 2.3. An optimal simulation on an EREW BSPRAM with parameters p, g, 1
can be achieved for any algorithm designed for a BSPC with parameters p, g, | that has
slackness o > p.

Proof for Theorem 2.2 follows from the one for Theorem 2.1, while the in-
terested reader can find proof for Theorem 2.3 in [55].

Tiskin’s results are interesting, since they show that classical BSP algorithms
can be efficiently run on shared-memory systems if the amount of data ex-
changed at every superstep (the h-relation) is at least equal to the number of
BSP nodes, which is an easily achievable condition in most cases.

Object-oriented BSP and further developments

Most BSP models presented so far do not place any condition on how the mem-
ory is organized, nor on the structure and contents of messages exchanged by
nodes. (An example of BSP model that explicitly considers memory hierar-
chies can be found at [22].) Most BSP implementations — especially the ones
based on BSPlib [14, 12], but also including other independent implementa-
tions [42, 65] — require that the programmer directly manages the memory,
allocating and freeing blocks of data “by hand” [27]. Nowadays, the most pop-
ular programming languages tend instead to reduce the burden on the pro-
grammer by automatically taking care of memory management. We think that
our BSP implementation should adapt this philosophy by providing the user
with a simple memory management scheme. We choose to embrace the object-
oriented paradigm [51] and place objects as the atomic unit of both BSP messages
(i.e, each message carries a single object) and memory management.

The idea of an object-oriented extension to the BSP model is not a new one.
In [31] Lecomber proposed a distributed memory object-oriented BSPC and
BSP++, its C++ implementation. Some of the ideas proposed in this work de-
rive from Lecomber’s solution, such an emphasis on easy-to-use mechanisms
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and primitives, while others — for example, tightly coupling an object with the
set of processes (nodes) allowed to use it, as a mean to express whether the
object is in a node’s local memory — only make sense in a distributed environ-
ment.

There exist, of course, many implementations of the BSP model for modern
languages, some of which support the object-oriented paradigm [25, 26, 33].
The library which bears the closest similarity to our work is, however, Multi-
coreBSP for Java by Yzelman and Bisseling [39, 66]. This library targets shared
memory, multicore machines and place objects as the atomic unit of data; it pro-
vides the user with few, clear-cut memory operations (mainly variants of put
and get) and an interface similar to the language’s Collections framework. The
definition of a BSP program in MulticoreBSP for Java also follows the object-
oriented paradigm: not only the whole computation is encapsulated into a
class that inherits from BSP_PROGRAM, but also variables are accessed and ma-
nipulated via methods of the object that represents them. We will emphasize
our solution’s similarity to MulticoreBSP for Java in more detail in Chapter 4;
here we highlight the fact that most programs written using the MulticoreBSP
for Java library are very easily ported to this work’s C++ library, once taken
care of the differences between the two languages.

Over the course of the years, new refinements of the BSP model have been
proposed. In [60], BSP’s original author Valiant proposed an extension of its
model to account for multicore machines and memory hierarchies called Multi-
BSP.

A Multi-BSPC is organized in a tree structure where the leaves (level 0
nodes) are processors with no local memory; every node at tree level i con-
tains a portion of level i — 1 nodes and acts as a sub-BSPC with some memory
space m; and internal synchronization, where internal level i — 1 nodes act as
the processing elements of the sub-BSPC. For example

* amulticore processor is a level 1 node with cache memory m; where each
core is a level 0 node;

¢ a multiprocessor machine that uses the above processor is a level 2 node
with shared random access memory 15;

* a LAN with a small number of such multiprocessor machines is a level 3
node, and so on.

One key element of the model is the ability to have nested BSP runs: Multi-
BSP programs can have subroutines which are themselves Multi-BSP programes,
and if the tree structure has enough depth the execution of those subroutines
can be performed as a BSP computation over lower-level nodes. The Multi-
coreBSP for C library [67], by the same authors of MulticoreBSP for Java, is an
implementation of the Multi-BSP model for shared-memory machines using
the C language. Although a C++ interface is provided, the library does not fo-
cus on the same object-oriented principles as its Java counterpart and the two
projects are mostly independent [38].

Lastly, we mention some of the most relevant distributed frameworks that
are inspired or directly based on BSP. This model gained popularity in the re-
cent years due to its inclusion in a highly influential proposal for a large-scale
graph processing system, Google Pregel [36], in which graph computation fol-
lows the bulk-synchronous pattern and is organized in supersteps. Pregel is a
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Figure 2.5: The FastFlow framework layered design (from [2]).

proprietary Google technology, but an open-source counterpart called Giraph
has been developed at Apache [6, 45, 17]. A more general example of dis-
tributed BSP framework, also by Apache, is the Hadoop-based Hama [7, 47].

2.2 FastFlow

FastFlow is a parallel programming framework for shared-memory multicore
machines, developed by the Parallel Processing research groups at University
of Pisa and University of Torino [3]. It aims to be an easy-to-use yet highly
efficient platform for the development of parallel applications targeting shared
memory multi/many-cores. It has been designed according to four fundamen-
tal principles to achieve those goals:

* a layered design that allows progressive abstraction from lower-level
hardware concepts up to high-level programming constructs (Figure 2.5).
The core of the framework is the run-time support layer, built on top of a
threading library like POSIX. The run-time support layer features an ex-
tremely efficient implementation of one-to-one, Single-Producer Single-
Consumer (SPSC) FIFO queues [57]. These queues are then used as build-
ing blocks for the above low-level programming layer, which provides sup-
port for other types of queues (one-to-many, many-to-one, many-to-many)
used in creating lock-free and wait-free data-flow graphs. Lastly, the
high-level programming level provides programmers with an interface for
building parallel programs based on the parallel patterns concept. Users
are not required to build their applications only on top of the high-level
programming layer, but can instead use constructs from the full stack of
layers;

* a focus on base mechanism efficiency; the SPSC queue structure that
forms the base mechanism of FastFlow is wait-free and lock-free, with
different optimizations for different underlying architectures. Those queues
are used as synchronization mechanisms for pointers, in a producer/con-
sumer pattern, and can be used to build networks of entities (threads)
that communicate according to the data-flow pattern;
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pipeline + task-farm + feedback

Figure 2.6: An example of arbitrary compositions of FastFlow computational graphs
(from [21]).

¢ the adoption of stream parallelism as the main supported form of paral-
lelism. This reduces the complexity of the library and is not restrictive,
as other forms of parallelism can be implemented via stream parallel pat-
terns. A stream program is a graph of independent stages that communi-
cate via data channels; the streaming computation is a sequence of trans-
formations on data streams done by nodes in the graph. The data streams
can either be generated and consumed entirely inside the streaming ap-
plication (endo-streams) or entirely outside (exo-streams);

¢ the algorithmic skeletons approach to parallel programming. The skele-
tons encompass common parallel programming concepts (e.g. Divide and
Conquer, map-reduce, ...) and make them available to the user as high-
level constructs with proper semantics.

FastFlow is designed to be portable over different architectures and to sup-
port different kinds of accelerators like GPUs and FPGAs. The authors have
also started to work on a distributed-memory implementation of the library [4].

FastFlow is provided as a C++11 header library, and its mechanisms are
available as template classes. The main component of the framework is the
FastFlow node, an object of the ff_node class; in its simplest form, a ff_node
contains the portion of sequential computation to be executed by a single runnable
entity (thread). The parallel computation can be expressed as a graph of ff_nodes
and, in true compositional fashion, can be considered a node itself, thus becom-
ing a portion of a broader computation. According to this principle, the library
provides algorithmic skeletons such as pipeline (ff_pipe) and farm (ff_farm)
that are also ff_node objects. This supports the construction of graphs of any
complexity to be built (Figure 2.6). In Chapter 4 we will see how to implement
a BSPC using FastFlow components.
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2.2.1 Slab Allocator

The FastFlow framework contains a custom allocator which may achieve higher
performance when the allocation structure is composed of small memory ar-
eas [56]; this allocator is based on the slab allocator introduced by Bonwick
in [13] and that will be briefly discussed here.

When dealing with frequent allocations and deallocations of small data ob-
jects, the CPU time for initialization and destruction of those objects may out-
weight the proper allocation and deallocation cost, thus degrading the overall
performance. A solution to this problem is object caching: when an object is
released, the system keeps it in memory instead of releasing it; when another
object with the same type is needed, the previous one is re-used and the cost of
initialization is spared.

A memory managed with slab allocation is organized into multiple caches
with no shared state and thus able to be locked independently. Each cache is
composed by several slabs (Figure 2.7); a slab consists in one or more portions
of contiguous memory divided into equal-sized chunks, with a reference count
(of already-requested chunks) and a free list. When a chunk is requested, it is
removed from the free list and the reference count is updated; the opposite
happens when releasing it. A slab is the minimum memory size that a cache
can grow or shrink; when a cache is full and a new object is requested, an
entire slab is allocated and the object is built from a chunk of this new slab,
and conversely,when the last chunk of a slab is released, the whole slab gets
deallocated and removed from the cache.

The FastFlow implementation of the slab allocator is optimized for the fol-
lowing scenarios:

¢ asingle thread allocates memory, and a single thread (not necessarily the
same one) deallocates it;

* asingle thread allocates memory, and multiple threads deallocate it.
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FastFlow provides two interfaces for this allocator: the low-level one,
ff_allocator, exclusively supports the allocation/deallocation patterns above,
while the “high-level” one, FFAllocator, can be used by any thread regard-
less of the memory operation to be performed. A C++11 “wrapper” for the
FFAllocator class is provided in the BSP library (see Section 4.9).
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Chapter 3

Architectural design

After having introduced the necessary background topics in the previous Chap-
ter, here we provide an overview on how the BSP library for FastFlow is log-
ically organized and how the various tasks are assigned to different entities.
One important thing to note is that the actual implementation of the library
will not necessarily map these logical entities to “physical” ones, as discussed
later in Chapter 4.

3.1 Overview

In the previous Chapter we discussed the three main components to the BSPC,
the abstract machine that will execute BSP programs in an analogous way
to how the abstract Random Access Machine executes sequential programs.
These components are:

e the nodes that will provide computing capabilities and local memory;

o the communication component that will deliver point-to-point messages be-
tween any two nodes;

¢ the synchronization facility that will periodically check if all nodes exhausted
their computation and communication tasks for the current superstep, al-
lowing the global computation to advance to the next one.

These components form the basis of the structure of many BSP implemen-
tations, and the BSP library for FastFlow makes no exception. Since the library
is designed for shared-memory systems, another logical component is needed:

e the shared memory, which will host the data needed by multiple BSP nodes.

Note that this BSPC is slightly different from the BSPRAM: in a BSPRAM,
the shared memory effectively replaces the communication component, while
in the BSPC presented here both entities coexist. Due to its specialized usage,
the communication component for this BSPC is also called memory manager
(MM).
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Figure 3.1: The BSPC architecture presented in this work.

Nodes

BSP nodes are the entities responsible for requesting memory operations and
performing computation over data that is already available in local memory. A
BSP node can be thought of being composed by four sub-components:

a processing unit (PU) that performs arithmetic and logical operations over
local data;

a local memory unit (LMU) that holds data available to be used exclusively
by the PU of the same node. This memory cannot be accessed directly
from other BSP nodes, but can be written to by the memory manager (see
Sections 3.3, 3.5);

a bidirectional communication channel (CC) with the memory manager.
The node can perform read/write requests for shared memory locations
over this channel, and conversely the memory manager will write data
on the node’s local memory through it;

a bidirectional synchronization channel (SC) with the synchronization fa-
cility. The node will signal the end of the local computation phase of the
current superstep through this channel, while the facility will signal the
start of the next one.

Note that in this BSPC the shared memory component is not accessible di-
rectly from the nodes. This avoids memory contention in case of simultaneous
accesses, which are instead mediated by the memory manager.

3.3

Memory manager

The memory manager (MM), as its name implies, is the entity that provides
BSP nodes with access to the shared memory. In the BSPC we’re considering, it
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Figure 3.2: The sub-components of a BSP node.

is also the logically centralized entity that effectively realizes the interconnec-
tion network between nodes via communication channels (Section 3.2). For this
reason, it corresponds to the original BSP’s definition of communication compo-
nent.

The MM is connected to all BSP nodes via communication channels. On
those channels, during the computation phase of the superstep, the MM re-
ceives read/write requests from nodes. Since these memory operations are
required to be asynchronous in the BSP model (i.e., they immediately appear
as completed but must actually take place at the end of a superstep), these
requests are stored inside the MM. When the computation phase ends, the
MM executes each request’s operation on the shared memory. The memory
contention resolution strategy is not fixed; for our purposes, the MM uses
the CRCW strategy, but it's conceptually simple to enact the EREW or CREW
strategies. After performing a memory operation, the MM sends the result of
that operation to the relevant node (see Section 3.5).

Lastly, the memory manager has a bidirectional channel that connects it to
the synchronization facility. The facility will notify the end of the local compu-
tation phase of all nodes to the MM, while the latter will notify to the former
the end of all memory operations and — thus — of the whole superstep.

3.4 Synchronization facility

The behavior of the synchronization facility is heavily implementation-depen-
dent, so its architectural specification is loosely defined.

The synchronization facility is the entity that enforces the computation struc
ture of the BSP model, i.e. the local computation and communication phases of
each superstep. It communicates with the BSP nodes via the synchronization
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channels (SCs, see Section 3.2), and with the memory manager via a single bidi-
rectional channel.

The synchronization facility periodically checks (via the SCs) if every node
has finished its local computation for the current superstep. As soon as this
condition is true, it asks the memory manager to perform the end-of-superstep
memory operations and waits for it to signal the end of those operations. When
the synchronization facility receives this signal, it broadcasts the superstep ad-
vancement message to all BSP nodes.

3.5 Shared memory

The defining characteristic of the BSPC that we are implementing is the shared
memory component. Unlike its role in the BSPRAM model, where it was ef-
fectively the entity responsible for communication between nodes, here the
shared memory takes the more passive role of “merely” being the memory
space where the data to be used by multiple nodes is stored.

As previously discussed (Section 3.3), nodes can only access the shared
memory by performing asynchronous requests via the MM. This means that
data to be used in local computation inside a node must be copied in that
node’s local memory, in order to avoid having to wait for the shared mem-
ory operation to conclude. The MM must perform this copy as efficiently as
possible and maintain coherence between both types of memory (local node
and shared). Thus, an adequate organization of the data in both the shared
and local memories is needed.

First of all, we remind that the whole BSP computation is in fact a combi-
nation of smaller local computations which — as the name implies — are per-
formed over local data. The result of a local computation is also stored in the
local memory of the node that performs it. In order for a local computation to
use data that belongs to other nodes (i.e. global data), that data must have been
requested in advance and already copied inside the node; conversely, the result
of a local computation can be sent to other nodes only after it has been written
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in local memory. There is, therefore, a certain level of data redundancy that must
be present in order for the BSP computation to take effect; this applies to any
BSPC, not only to the one subject of this work.

The main ideas for data management in the architecture of our BSPC are
the following:

1. each global data element is replicated on the shared memory p times
(where p is the number of nodes). Basically, each node has its own private
copy of the data element on the shared memory;

2. a write request write(element, payload, recipient) is fulfilled by the MM
by writing the request payload in both the recipient’s local memory and
private copy of the element in the shared memory. The MM can perform
both writes in parallel (one on the CC with the recipient node, one on the
shared memory channel);

3. aread request read(element, source, destination) is fulfilled by the MM in
the same way as a write request, i.e. the payload is the source’s private
copy of the element in the shared memory, which is copied into the des-
tination’s private copy and local memory in parallel.

The first idea trades off some shared memory space that may go unused
(a private copy for every node is created for each data element, even if that
element is not used at all in some nodes) for an increase in performance for
read operations, since the element to be read is already present in the (fast)
shared memory and there is no need to copy it from the source’s local memory.
The second and third ideas guarantee coherence between the data in the shared
memory and their copies in the nodes” local memories.
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3.6 Summary

In this Chapter we introduced an architectural design for an object-oriented
BSP model on shared memory machines. We defined nodes as the computing
entities, with fast local memory and a series of channels for communication
and synchronization. We described a shared memory organization that allows
for efficient retrieval of information and the network component in charge of
communication and memory management. Finally, we detailed the tasks of a
synchronization facility that regulates the BSP supersteps.

In the next Chapter we will describe a C++ implementation of a BSPC that
follows this design. Each of the components described above will be repre-
sented by (one or more) C++ objects.
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Chapter 4

Implementation

This chapter describes the implementation design and choices for the BSP li-
brary for FastFlow. The architecture of the BSPC described in Chapter 3 is re-
alized over common shared-memory, multicore machines using the FastFlow
framework discussed in Section 2.2. The proposed implementation fully em-
braces the object-oriented paradigm by having the object be the atomic data
element of the BSP computation. The programmer is therefore relieved of hav-
ing to manage memory space manually.

4.1 Library structure

The library is provided as a header-only library, for consistency with the Fast-
Flow framework. Programmers who wish to use it can simply include the
bsp_program. hpp file in their code.

Here is a list of the library files, together with a short description of their
contents.

® bsp_program.hpp (Section 4.3)

The FastFlow core of the BSP library. Defines the underlying FastFlow
structure, i.e. a farm with custom emitter and collector, and provides the
user with means to build the BSP computation by providing bsp_node
objects and (optionally) functions to be called before and after the com-
putation.

® bsp_node.hpp (Section 4.4)
Specialization of ff_node to work as the computing entities of a BSPC.
Users must write their own classes that inherit from bsp_node and spe-
cialize the parallel_function method.

e bsp_internals.hpp (Section 4.5)

Forward declarations and definitions for the communication component,
bsp_container and its specializations (bsp_variable and bsp_array).
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e bsp_communicator.hpp (Section 4.6)

Implementation of the communication component, including the requests
mechanism and the methods responsible for the creation of new shared
data elements.

e bsp_variable.hpp (Section 4.7)

Implementation of the data structure that represents a shared element.

® bsp_array.hpp (Section 4.7)

Specialization of the bsp_variable structure to handle multiple elements
of the same type.

e bsp_barrier.hpp (Section 4.8)

Implementation of a simple, reusable barrier that partially fulfills the role
of the synchronization facility in a BSPC.

e stl _allocator.hpp (Section 4.9)

C++11 wrapper for the FFAllocator class (FastFlow’s version of the Slab
Allocator, see Section 2.2.1).

4.2 Architecture

The BSPC architecture discussed in Chapter 3 forms the basis for this imple-
mentation, which targets single shared memory multi-core machines and relies
on the FastFlow framework. It is easy to see that the simplest way to realize the
BSPC is to map every entity on a FastFlow node, except for the shared memory
entity which is mapped on the program’s virtual memory. This mapping is
unfortunately inefficient: the memory manager node remains idle while “pro-
cessing” (BSP) nodes perform their local computation, and vice-versa all BSP
nodes must wait that the MM performs its end-of-superstep routine without
doing nothing.

A more reasonable mapping, which is used in this work, distributes the MM
and synchronization facility tasks to FastFlow nodes, effectively mapping the
two entities onto the latter.

4.3 bsp_program.hpp

The BSP implementation presented in this work uses FastFlow as the target
parallel programming framework, namely it is implemented on top of it. The
bsp_program class encapsulates the whole BSP computation. It is a specializa-
tion of the ff_node class and, as such, it can be used as the component of a
broader pattern. It should be noted, however, that in the current state of the
library the support for FastFlow composition is still basic, althoug fully func-
tional: the BSP nodes can access the object received in the bsp_program Fast-
Flow node as input, and can forward objects to the next stage. The actual BSP
computation can be performed either via the .start() method, which is com-
pletely unrelated to the broader FastFlow computation, or by sending a token
to the bsp_program node.
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Figure 4.1: The FastFlow graph of the implementation.

The bsp_program is internally organized as a ff_Farm with custom Emitter
and Collector nodes, organized in a ff_Pipe. The Worker nodes of the farm
properly represent the BSPC, i.e. implement all non-memory entities of the
BSPC discussed in Chapter 3. The specialized Worker nodes, objects of the
bsp_node class, will be discussed in Section 4.4.

bsp_program(std: :vector<std::unique_ptr<bsp_node>>&& _processors,
std::function<void(void)> _pre = nullptr,
std::function<void(void)> _post = nullptr):
nprocs{static_cast<int>(_processors.size())},
comm{nprocs},
barr{nprocs},
E{std::move(_pre), nprocs},
processors{std: :move(_processors)},
C{std::move(_post), nprocs} {
for (size_t i{0}; i < nprocs; ++i) {
processors[i]->nprocs = nprocs;
processors[i]->id = i;
processors[i]->barrier = &barr;
processors[i]->comm = &comm;
C.master = this;

Listing 4.1: The bsp_program constructor.

The user is responsible for the creation of the worker nodes, which must
then be provided to the bsp_program object by passing an std: :vector of
std: :unique_ptrs to the nodes. The constructor for the bsp_program class will
inject the necessary information into the bsp_node objects: in Listing 4.1, lines
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13-14, it is shown how the logical Communication Channels and Synchroniza-
tion Channels (see Section 3.2) are realized, i.e. as pointers to respective objects.
Optionally, the user can also provide two functions pre and post that will be
executed respectively before and after the BSP computation. These functions
cannot take arguments and cannot return values. Internally, they are executed
respectively by the ff_Farm’s Emitter and Collector nodes (Listing 4.2, line 6
and Listing 4.3, line 7).

struct emitter: ff::ff_node {

[...]

void* svc(void+ in) override {
if (preprocessing !'= nullptr) preprocessing();
for (int i = 0; i < count; i++) {
// ENDCOMP is a special value to stop the
// FastFlow execution after the BSP
// computation ended
ff_send_out (ENDCOMP) ;

}
return EQOS;

Listing 4.2: The emitter’s svc method.

struct collector: ff::ff_node {

[...]

void+ svc(void+ in) override {

f (in == ENDCOMP) {

if (++count == threshold) {
if (postprocessing '= nullptr) postprocessing();

}
return GO_ON;

} else { // Request to forward onto later stages
master->forward(in);

}

return in;

Listing 4.3: The collector’s svc method.

Listing 4.4 shows the method that actually builds and runs the whole BSP
computation. First, the FastFlow graph is built by moving the bsp_nodes into
the Workers entities of the ff_Farm (lines 2-6, 11). Then, the eventual FastFlow
token is forwarded to the communicator so that it can be available to all BSP
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void start(void* in = nullptr) {
std::vector<std::unique_ptr<ff::ff_node>> workers;
for (size_t i{0}; i < nprocs; ++i) {
auto d = static_cast<ff_nodex>(processors[i].release());
workers.emplace_back(std: :unique_ptr<ff_node>(d));

}

// Let all BSP nodes see the FastFlow input
comm.set_fastflow_input(in);

ff::ff_Farm<> farm(std::move(workers), E,C);

if (farm.run_and_wait_end() < 0)
std::cout << "error in running farm" << std::endl;

comm.end();

Listing 4.4: The start method of the bsp_program class.

Workeri : bsp_node

Synchro- Memory
nization Manager
Task Tasks

Figure 4.2: Logical tasks performed by a runnable bsp_node object.

nodes (line 9). The ff_Farm is then started (line 13) and at the end (line 16) the
cleanup function of the bsp_communicator class is called, in order to properly
deallocate all relevant data structures (see Section 4.6).

4.4 bsp_node.hpp

The central unit of a BSP computation is the BSP node, an entity that is capable
of processing data stored inside its own local memory and that can send and
receive data to and from other nodes. The BSP node abstraction is realized
into the bsp_node class, which is itself a specialization of the FastFlow ff_node
and as such is the entity that is mapped onto the actual machine’s processing
elements, in this case POSIX threads.

As it will be discussed later (Sections 4.6 and 4.8), the communicator and
synchronization entities are not implemented into runnable, standalone enti-
ties. Their tasks will, instead, be executed by the processing elements that run
the bsp_node objects. In particular, communication requests are done by call-
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ing the put and get methods of the bsp_variable and bsp_array classes (see
Section 4.7). The end-of-superstep operations, be it signaling the end of local
computation or processing the memory requests, are executed when the user
calls the bsp_sync method (see Listing 4.5).

void bsp_sync() {
barrier->wait();
comm->process_requests(id);
barrier->wait();

Listing 4.5: The bsp_sync method.

The bsp_node class is quite simple. It provides protected methods to access
information such as the number of BSP nodes or request new BSP variables.
The intended usage for this class is for the programmer to create a class that in-
herits from bsp_node and implements the virtual parallel_function method.
An example of inherited class can be found in the program mwe. cpp that has
been provided with the library.

4.5 bsp_internals.hpp

This file mainly provides forward declarations and interfaces for other classes,
namely bsp_communicator (Section 4.6), bsp_variable.hpp and bsp_array.hpp
(Section 4.7). Nevertheless, two important data structures are defined here:
communication requests and containers that implement the first idea for data
management explained in Section 3.5, i.e. for every global data element the
shared memory holds a private copy for each node.

4.5.1 Requests

Requests are represented by a record-like struct that holds the relevant fields
as shown in Listing 4.7. The request_type enum (Listing 4.6) is used for dis-
cerning how the request itself must be processed at the end of the superstep.
Note that not all actual request categories are represented — in particular, the
“variable get” and “array element get” requests are stored with the same type
as their “put” counterparts, but with the source and destination fields re-
versed.

enum request_type {
var_put,
arr_put_el,
arr_put,
arr_get

Listing 4.6: Possible request types.
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In the “get” request types, the data object is gathered from the relevant
memory element by the communicator. In the “put” ones, the data is instead
provided by the node that performs the request. In both cases, the data must
be copied to allow the original element to be modified by its owner without
repercussions on the memory operation. The request object contains a pointer
to the copy, wrapped in a std: : shared_ptr object to allow for simpler dynamic
memory management.

struct request {
request_type t;
int reference;
int source;
int destination;
int src_offset;
int dest_offset;
int length;
std::shared_ptr<void> element;

// Constructor..

Listing 4.7: Fields of a request data structure.

4.5.2 Shared memory containers

As outlined in Section 3.5, the ideal memory organization for shared memory
elements in our BSPC consists in duplicating each element p times, where p is
the number of BSP nodes. This allows for efficient memory operations at the
cost of increased space usage!.

As it will be discussed further in Section 4.7, the BSP library for FastFlow
explicitly place C++ objects as the unit of data exchanged in communication
between nodes. bsp_variables and bsp_arrays are therefore template classes
whose type arguments are essentially without restraints. This allow maximum
flexibility from the user point of view, but provides the additional challenge
to having to store heterogeneous data in the single data container that im-
plements the shared memory entity. This would not be a problem in a lan-
guage that supports type erasure and reflection like Java, where a container
like ArrayList<Object> would have sufficed and type information could be
saved in a Class object, but unfortunately C++ does not provide such mecha-
nisms. We decided to implement our own type erasure variant by using void
pointers and closures to obtain respectively storage of heterogeneous data and
a way to save relevant type information.

The inner_var (Listing 4.8) and inner_array (Listing 4.9) are private inner
classes of the bsp_communicator class. They both contain a vector of p voidx

! Actually, in this implementation we avoided the redundancy by making nodes hold pointers
to their private data, instead of having to copy entire elements to the nodes’ local memories (rep-
resented as class fields in the implementation). These pointers are furthermore invisible to the
user, so “BSP-unsafe” modifications of the shared object are impossible unless explicitly requested
(Section 4.7).
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struct inner_var {
// vector of nprocs elements
std::vector<void*, ff::FF_Allocator<void+>> element;
// bookkeeping functions needed to work with voidx
// function to replace a variable with another value
void (xswap)(voidx el, void* other);
// function to safely free memory occupied by an element
void (+free_el) (voidx el);

// Constructor...

Listing 4.8: The inner_var class.

objects and functions that will enclose some type information. Objects of any
type can be stored in an inner_var or inner_array object and, since the latter
classes are not templated, their objects can be stored in a regular container like
std: :vector regardless of what they contain.

struct inner_array {
// vector of nprocs arrays
std::vector<void*, ff::FF_Allocator<void+>> element;
// bookkeeping functions needed to work with voidx*
// function to replace an element of the array with another value
void (xput)(void+ el, void+ toput, int pos);
// function to replace a portion of the array
void (xreplace)(void* el, int srcof, int dstof,
int len, voidx toput);
// function to safely free memory occupied by an element
void (xfree_el) (voidx el);

// Constructor...

Listing 4.9: The inner_array class.

A inner_var object that stores an element of type T must be provided with a
swap(element, other) function that copies the value pointed by other into the
variable pointed by element. Both element and other are passed as void* and
must be converted to T* inside the function, which effectively saves the type
information for T inside the function. The put(element, other, position)
and replace(element, offsetl, offset2, length, other) functions of the
inner_array class have the same purpose. Both inner_var and inner_array,
moreover, have a free_el(element) function to deallocate an element. The
task of creating these functions is not left to the user and are instead generated
by the bsp_communicator class when a new BSP variable or array is requested.
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4.6 bsp_communicator.hpp

As said in the introduction to this chapter, the implementation for the BSPC
discussed in Chapter 3 does not assign every logical entity to a physical one.
This is especially true for the bsp_communicator class, which not only repre-
sents two logical entities — the Memory Manager and the Shared Memory —
but is also distributed over the FastFlow nodes instead of being an autonomous
centralized node.

4.6.1 Implementation of the Shared Memory entity

The Shared Memory entity is implemented simply as a vector of inner_vars
or inner_arrays that represent shared elements (see Section 4.5.2). To obtain
a higher performance when accessing those containers, lookup maps — which
associate hashes of the variables (or arrays) to their position in the vector — are
used. The hashing function used for this purpose is the one commonly known
as djb2 ([53, 62], shown in Listing 4.11), which is a simple yet effective [29]
hash that takes a string and an integer and returns another integer. In our case,
the string argument is an unique representation of the variable’s type obtained
with the typeid builtin, while the integer argument is obtained from the cur-
rent superstep number and the total number of variables of type T requested
by the current node, for reasons that will become clear shortly. The hash result
is then used as the key for a lookup map, whose values are positions in the
vector of inner_vars. C++17 std: : shared_mutexes regulate concurrent access
to the shared storages: those mutexes allow for a single writer-multiple read-
ers pattern, so any number of nodes can access (and modify!) already-existing
shared elements, but only a single node at a time can create a new variable or
array (lines 10 and 12 of Listing 4.10).

One of the problems that arised when devising the implementation was
how to allow users to request access to the same shared variable?. For example,
take this pseudo-code:

bsp_variable v = get_variable<double>();
if (node_id == 0)
v.put(payload=5.0, destination=1);

Suppose we execute this code on a BSPC with two nodes. The communicator
entity receives a request for a bsp_variable of type double from both nodes,
but does not know if they are asking for access to the same variable or for the
creation of two separate variables. There are two ways to solve this problem:

¢ let the user specify unique IDs when requesting variables (e.g. as strings
or integers), and treat variables of the same type with the same ID as the
same shared object;

¢ let the library manage variable requests automatically, providing the user
with a clear rule for defining when a fresh shared object is created.

We chose the second option, according to the library’s philosophy of relieving
the user from the burden of explicitly managing memory aspects. We use the
following proposition.

2Wherever we refer to variables in this section, the same concept applies for arrays.
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// number of current superstep
int generation = 1;

// counts the variables requested by each worker in this superstep
std::map<std::string, int>* var_count;

// counts the arrays requested by each worker in this superstep
std::map<std::string, int>+* arr_count;

// mutex for multiple readers-single writer access to the variables
mutable std::shared_mutex var_mutex;

// mutex for multiple readers-single writer access to the arrays
mutable std::shared_mutex arr_mutex;

// dictionary for quick retrieving of variables based on their hash
std: :map<int, int> variable_dict;

// dictionary for quick retrieving of arrays based on their hash
std::map<int, int> array_dict;

// actual storage of variables
std::vector<inner_var> variables_storage;
// actual storage of arrays
std::vector<inner_array> arrays_storage;

Listing 4.10: Fields of the bsp_communicator class used to implement the Shared Mem-
ory logical entity.

static int get_hash(const charx s, int seed) {
int hash = seed + 5381;
while (xs) {
hash = hash * 33 © (xs++);
}

return hash;

Listing 4.11: The hashing function for variables and arrays.
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Proposition 1. During the i-th superstep, for any node the n-th request for a
variable of type T will return a handle to the n-th shared element of type T.

In practice, this means that when a node requests a variable of type T for
the first time in a superstep, and it is the first node in chronological order to
do so, a new shared element of type T is created. When any other node re-
quest their first variable of type T, they receive a handle to (their private data
of) this shared element, and so on. The method to request a variable is shown
in Listing 4.12, and the one to request an array is similar. Lines 2-12 show how
the hash value used in the lookup map is obtained: the method then checks
if a variable with the same hash is present (lines 13-17) and, if not, a new
inner_var shared element is created. Lines 22-28 show how type informa-
tion is captured inside the functions passed to the inner_var constructor. The
newly-created shared element is then pushed into the shared memory (line 30)
and the lookup map is updated (line 31). The shared element’s private data —
relative to the node that requested it — is updated with the provided value (line
37), and a bsp_variable containing that pointer is returned to the caller (line
39).

4.6.2 Implementation of the Memory Manager entity

The bsp_communicator class also fulfills the role of the Memory Manager, i.e. the
entity that collects communication requests during the local computation phase
of a superstep and executes them at the end of it. As we said before, there is
no autonomous entity that performs the Memory Manager tasks in a central-
ized way. FastFlow nodes — the same that run BSP nodes — will handle both
request management and execution. The Memory Manager implementation
shown here (Listing 4.13) has p request queues, one for each BSP node. Con-
current access to these queues is regulated by a series of mutexes, one mutex
per queue. The i-th request queue will hold all requests that have the i-th node
as destination. In this way, at the end of the superstep, the FastFlow node that
is running BSP node i can process all requests directed to it with no concerns
over concurrent accesses.

Listing 4.14 shows an example of how requests are inserted and managed.
First of all (line 4), exclusive access to the destination node’s request queue is
obtained by locking the relevant mutex. Then, the request proper is created
and enqueued (lines 5-6), and finally the mutex is released. m_shared_ptr
is a macro to simplify the creation of a std::shared_ptr using the custom
stl_allocator described in Section 4.9.

Listing 4.15 shows instead how requests are processed by the various Fast-
Flow nodes at the end of a superstep. Each node processes the requests which
feature it as destination (i.e. the ones who have effect on the node’s private
data of shared elements). In this way, concurrent access to the same portion
of shared memory is avoided and no locking mechanism is needed. Each re-
quest is then processed according to their type; lines 5-11 of Listing 4.15 show,
for example, how a variable put request is managed. The “type information-
holding” functions of the inner_var and inner_array classes are used here:
since the data is stored as void* pointers, these functions are needed to cast it
back to its proper type before it can be modified (Section 4.5).
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bsp_variable<T> get_variable(int holder, T+ initial val) {
auto tname = typeid(T).name();
// no. of variables of type T requested by the current worker
int get_count = 0;
try {
get_count = var_count[holder].at(std::string(tname));
} catch (const std::out_of_range&) {
var_count[holder].insert({std::string(tname), 0});
b
// hash on type, superstep and number of vars
int hash = get_hash(typeid(T).name(),
(generation * 5000000) + get_count);
int ref;
// try to find a variable w/ the same hash
try {
std::shared_lock lock(var_mutex);
ref = variable_dict.at(hash);
} catch (const std::out_of_range&) {
std::unique_lock lock(var_mutex);
auto iter = variable_dict.find(hash);
if (iter == variable_dict.end()) {
inner_var var{nprocs, [](void* el, void* other){
auto tptr = static_cast<Tx>(el);
*tptr = x(static_cast<Tx>(other));
}, [1(void+ el){
auto tptr = static_cast<Tx>(el);
delete tptr;
I3 ¥
ref = variables_storage.size();
variables_storage.push_back(var);
variable_dict.insert({hash, ref});
} else {
ref = iter->second;

}

// iInitialize with the value requested by the worker
variables_storage[ref].element.at(holder) = initial_val;
var_count[holder].at(std::string(tname))++;

return bsp_variable<T>{ref, holder, this, initial_val};

Listing 4.12: The get_variable method.

std: :mutex* mutexes;
std::vector<request, ff::FF_Allocator<request>>* requests;

std::atomic_int process_count{0};

Listing 4.13: Fields of the bsp_communicator class used to implement the Memory Man-

ager logical entity.
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template <typename T>
void variable_put(int what, int source,
int destination, const T& element) {
mutexes[destination].lock();
requests[destination].emplace_back(request_type::var_put,
what, source, destination, 0, 0, 0, m_shared_ptr(T, element));
mutexes[destination].unlock();

Listing 4.14: The variable put request handler of the bsp_communicator.

void process_requests(int id) {
// Request filtering by worker id
for (const auto& req: requests[id]) {
switch (req.t) {
case request_type::var put: {
auto ptr = variables_storage.at(req.reference)
.element[req.destination];
variables_storage.at(req.reference)
.swap(ptr, req.element.get());

break;
}
case request_type::arr put el: { ... }
case request_type::arr_put: { ... }
case request_type::arr get: { ... }
}
}
if (++process_count == nprocs) {
generation++;
delete[] arr_count;
arr_count = new std::map<std::string, int>[nprocs]();
delete[] var_count;
var_count = new std::map<std::string, int>[nprocs]();
delete[] requests;
requests = new std::vector<request,
ff::FF_Allocator<request>>[nprocs]();
process_count = 0;
}

Listing 4.15: Request processing.
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Lines 17-27 are only executed by the last node that finishes processing its
requests. They “clean the state” relative to the current superstep, i.e. reset the
variable and array counters to 0 and empty all request queues.

void bsp_communicator::end() {

for(auto& : variables_storage) {
auto del = var.free_el;
for (auto& : var.element) {
del(el);
}
}
for(auto& : arrays_storage) {
auto del = arr.free_el;
for (auto& : arr.element) {
del(el);
}
}

delete[] arr_count;
arr_count = nullptr;
delete[] var_count;
var_count = nullptr;
delete[] requests;
requests = nullptr;
delete[] mutexes;
mutexes = nullptr;

Listing 4.16: The bsp_communicator final cleanup function.

Finally, Listing 4.16 shows the end () method of the bsp_communicator class.
It is a cleanup function that gracefully deallocates all shared objects and data
structures used by the Shared Memory and Memory Manager entities. It will
be called by the encompassing bsp_program object at the very end of the BSP
computation, after all nodes have exhausted their local computations (see Sec-
tion 4.3).

4.7 bsp_variable.hpp and bsp_array.hpp

As outlined in Section 3.5, even in our shared-memory BSPC each node must
have all data needed for computation in its local memory, and this includes
shared objects. There is therefore a need for a representation of those shared el-
ements inside the BSP node. The bsp_variable and bsp_array fulfill this task.
A bsp_variable<T> is a template class that holds the local copy of a shared
object of type T, and it also represents the handle of the shared object that the
user can employ to perform memory requests on it. Due to limitations in the
STL functions and data structures used in the implementation (in particular
the std::allocate_shared function, see [49]), the type T cannot be a C-style
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array type, e.g. E[]. This restriction is lifted in the C++20 version of the lan-
guage. The bsp_array<T> class is similar to the previous one, except for the
fact that the shared object is a resizable vector of elements of type T. Therefore,
the class provides methods for vector manipulation like iterators and access to
elements. Unlike bsp_variable, in the bsp_array<T> class T can be a C-style

array type.

template <typename T>
class bsp_variable: public bsp_container {

// The template type must be copy-constructible and copy-assignable
static_assert(std::is_copy_constructible<T>::value &&
std::is_copy_assignable<T>::value,
"Type of bsp_variable must be
"copy-constructible and copy-assignable");

private:
T+ element; // Pointer to the actual element

public:
// Replaces the element on another worker
void bsp_put(const T& elem, int destination) {
comm->variable_put<T>(reference, holder, destination, elem);

// Returns the element in another worker's memory
// directly (without waiting for a superstep sync)
T bsp_direct_get(int source) {
return comm->variable_direct_get<T>(reference, source);

}

// Allows direct access to the element
// in this worker's memory
T& direct_access() {

return xelement;

Listing 4.17: The bsp_variable class.

Listing 4.17 shows a portion of the bsp_variable<T> class. First of all, in
order to perform BSP memory operation, elements of type T must be copy-
constructible and copy-assignable (lines 4-7); this is needed, since objects have
to be copied inside requests and successively into the shared memory. The lo-
cal copy of the private data of the shared object is implemented simply as a
pointer to the data stored inside the bsp_communicator object, to save some
copies. The user can call the methods bsp_put and bsp_get of the class (with
different signatures according to the desired operation to be executed) to per-
form memory requests on the current shared object. The class provides also
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two “BSP-unsafe” functions: bsp_direct_get and BSPunsafe_access. The first
one (lines 23-25) returns a copy of a node’s private data of the shared element;.
This violates the BSP condition that a node cannot access another node’s local
or private memory, thus the function is deemed “BSP-unsafe”. Still, the fact
that a copy of the desired data is returned means that this function can reason-
ably be used inside a BSP computation without having to consider unwanted
side effects.

The second “BSP-unsafe” method is more problematic, since it gives access
to the actual element in the shared memory (lines 29-31). This is a big violation
of our BSPC’s premise that the Memory Manager entity is the only one allowed
to operate on shared memory, and in general of the whole BSP concept of only
allowing communication effects to take place at the end of the superstep. Both
direct_get and BSPunsafe_access functions are provided for compatibility
with similar methods used in the MulticoreBSP for Java library (see [40]).

The bsp_array<T> class is very similar to the bsp_variable<T> one, so it
won’t be discussed as much. T still needs to be a copy-constructible and copy-
assignable type, and the class provides specialized bsp_put and bsp_get meth-
ods for single elements of the vector. Arrays also have another BSP unsafe
method, BSPunsafe_put, that places an element into the node’s private copy
without waiting for the end of the superstep.

4.8 bsp_barrier.hpp

The synchronization facility of our BSPC (Chapter 3) is the entity that properly
manages the flow of supersteps of the whole computation: its tasks are to

1. check wherever all BSP nodes have finished their local computation;
2. wait that the Memory Manager finishes processing requests;

3. begin the next superstep, updating the BSPC’s relevant structures (see
Listing 4.15) and signaling the nodes to begin local computations again.

The request processing and the update portion of task 3 are implemented
in our library in the bsp_communicator class (see Section 4.6). This leaves the
implementation of the actual check and the signal to start the new superstep.
A synchronization mechanism that implements them in a very simple way is
the barrier. Nodes that finish their local computation will wait at the barrier
for their peers to do the same. When all nodes reach the barrier, the latter is
lifted and they can begin the local operations of the next superstep. As seen
in Listing 4.5, the barrier is called twice — once when the nodes finish their
local computation, and once when the Memory Manager finishes processing
requests (remember that both operations are effectively executed by the physi-
cal entity that runs the underlying FastFlow node).

The barrier structure used in the implementation is shown in Listing 4.18.
It’s a simple structure that uses a condition variable (line 4) and its wait/no-
tify mechanism (lines 35-38), together with a generation counter to allow for
multiple uses [63].
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class bsp_barrier {
private:

std::mutex mutex;

std::condition_variable cond_var;

// Number of workers needed to release the barrier
int threshold = 0;

// Count of workers currently at the barrier

int count = 0;

// Number of times the barrier has been used

int generation = 0;

public:

bsp_barrier() = delete;

explicit bsp_barrier(int size):
threshold{size},
count{size},
generation{0} {

// Copy constructor

bsp_barrier(const bsp_barrier& other):
threshold{other.threshold},
count{other.count},
generation{other.generation}{

// Barrier function
void wait() {
std::unique_lock<std: :mutex> lock{mutex};
auto lastgen = generation;
if (!(--count)){
generation++;
count = threshold;
cond_var.notify_all();
} else {
cond_var.wait(lock,
[this, lastgen](){ return lastgen != generation; });

Listing 4.18: The bsp_barrier class.
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49 stl_allocator.hpp

The FastFlow allocator discussed in Section 2.2.1 performs better than the stan-
dard C++ allocator when the program has to do multiple allocations of small
memory areas ([56], also discussed in Chapter 5). Oftentimes, the request
mechanism of the Memory Manager exhibits this behavior, so it can be helpful
to use the FastFlow allocator in place of the standard one. Unfortunately, this
allocator does not provide an “STL-conforming” interface [5], so it has to be
used manually (e.g. calling the malloc and free functions of an FFAllocator
instance). The stl_allocator.hpp file contains a very simple interface (List-
ing 4.19) that allows the use of the FastFlow allocator wherever an STL alloca-
tor is required, e.g. in the std: :allocate_shared function.

template <typename T>

class FF_Allocator {

public:
using value_type = T;
using propagate_on_container_move_assignment = std::true_type;
using is_always_equal = std::true_type;

FF_Allocator() noexcept = default;
template <class U>
explicit FF_Allocator(const FF_Allocator<U>& other) noexcept {};

value_typex allocate(std::size_t n) {
return static_cast<value_ typex>(FFAllocator::instance()
->malloc(n* sizeof(value_type)));

}

void deallocate(value_typex ptr, std::size_t) noexcept {
FFAllocator::instance()->free(ptr);
}
}i

Listing 4.19: The FastFlow allocator “STL interface”.
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Chapter 5

Experimental validation

5.1 Performance metrics

Before we delve into the analysis of the performance of the library presented in
this work, it is important to lay the foundations for the metrics used throughout
the Chapter. First of all, we formally define the most straightforward param-
eter of the set: the time needed for a computation to take place from start to
finish.

Definition 5.1. The total time it takes to compute a single result is called la-
tency, usually referred to with the symbol L.

The latency is a first indicator of how well the program behaves. Clearly,
the lower L is, the better the program is considered. Nevertheless, if to obtain
a slightly lower latency we must massively increase the resources in play, the
tradeoff is not always worthwhile. We need a metric to define how “well-
utilized” is the machine that performs the computation. Since we are dealing
with parallel programs, the number of workers (nodes, cores, processors) used
in the computation has an effect on the latency.

Definition 5.2. A parallel computation over p workers is said to have latency
Tpm(p) (or Tp).

As a particular case, Tpar(1) is the latency of a computation over a single
worker. Oftentimes, executing a parallel algorithm on a single worker will
still build a set of data structures and mechanisms for parallel synchronization
and communication which is not actually needed inside the computation itself,
therefore inflating the latency. For this reason, analyses on the performance of
a parallel algorithm or library are conducted with regards to the latency of the
best sequential algorithm that solves the same problem without overheads from
parallel-specific mechanisms.

Definition 5.3. A purely-sequential algorithm with no parallel overhead is said
to have latency Tgeg.

We can now introduce relevant metrics for performance evaluation.
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Definition 5.4 (Speedup). The ratio between the latency of a sequential compu-
tation and the latency of the corresponding parallel computation over p work-
ers is called speedup:

TSE‘L]
S =
PP =3
The speedup roughly represents “how much” the latency changes when
switching from a purely sequential computation to a parallel one over p work-
ers. The best result one can hope to achieve is to perfectly cut the latency of the
sequential computation down by a factor p:

(5.1)

_ Pl _

1
Tpar(p) = ETseq = sp(p) Toeq

This behavior is called linear speedup and it is rarely encountered, due to par-
allel computations needing coordination and communication between them; in
fact, the speedup for a single worker

TSEq
sp(l) = ——=
is almost never equal to 1 due to the abovementioned need to build all struc-
tures needed for the parallel computation. This suggests a new metric that
closely encompasses “how better” a parallel computation behaves when in-
creasing the number of workers.

Definition 5.5 (Scalability). The ratio between the latency of a parallel compu-
tation over a single worker and the latency of the same parallel computation
over p workers is called scalability:

_ Tpar()

sc(p) = T () (5.2)

This metric is sometimes called relative speedup, while the quantity of equa-
tion 5.1 is called absolute speedup [37].

Finally, we define a measure that represents “how much” of the hardware
is used during a parallel computation.

Definition 5.6 (Efficiency). The efficiency is the ratio between the speedup of
a parallel computation and the number of workers:

P pTpar(p)

A parallel computation that achieves linear speedup sp(p) = p will have
efficiency

e(p) = PP e (53)

i.e. it fully utilizes the available hardware resources. Using the above definition
of scalability, one can also define a relative efficiency as

_ se(p)
er(p) = p
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In some cases, one can attain an efficiency greater than 1,i.e. sp(p) > p. This
phenomenon is called superlinear speedup and may be due to various factors
such as

® a better cache exploitation in the parallel program w.r.t. its sequential
counterpart;

¢ a different organization of data objects for parallel programming, im-
proving data locality even when the parallel computation uses a single
thread;

¢ the parallel algorithm is simply more efficient than the sequential one, in
the sense that it may skip unnecessary work (e.g. earlier branch pruning
in search tree problems).

These situations are rarely encountered, therefore sublinear speedups are
more common.

5.2 Machine architecture

Tests were conducted on a machine of the Department of Computer Science,
University of Pisa. It features an Intel processor of the Xeon Phi x200 (Knights
Landing) family, sporting 64 cores at 1.3 GHz [28]. Each core can have up to
four threads, for a total of 256 threads. The machine has 48 GB of RAM and
runs the GNU/Linux CentOS 7.2.1511 operating system, kernel version 3.10.
The C++ programs were compiled using gcc version 7.3.0 (libstdc++ version
6.0.24), while the Java programs (packaged into JAR files) were executed using
OpenJDK 1.8.0_201. The JAR files were instead compiled with the official Ora-
cle Java SDK version 13.0.1 (at language level 8) on a different machine with a
2.3 GHz dual-core Intel Core i5 processor, 8 GB RAM, running macOS 10.14.6.
The FastFlow version used is 2.2.0, checked out from the official repository at
commit 8b9105d [20, 19].

5.3 Benchmarks

The BSP model has traditionally been used for solving numerical problems,
especially in the field of linear algebra. In [9], Bisseling introduced a series
of programs written in C using the BSP model, the BSP educational package. It
features three main BSP algorithms for solving the following problems:

e LU decomposition of a square matrix;
e the Fast Fourier Transform of a vector of complex numbers;
¢ the sparse matrix-vector multiplication.

The BSPedupack also includes a program for testing the parameters of the
BSPC in use and a “toy” program (used as a tutorial of sorts for the BSP model)
that performs the inner product of two vectors.
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The BSPedupack suite is one of the most widespread examples of BSP pro-
grams: most BSP implementations use it for testing performance and correct-
ness. Bisseling’s original version targets the BSPlib interface for C [8], but a
version also exists for the MulticoreBSP for Java library.

When choosing the algorithms to use for testing our library, the BSPedu-
pack ones seemed the obvious choice. We chose, though, to substitute one of
the programs — the sparse matrix-vector multiplication — with a non-numerical
algorithm, to show an example of how the BSP model is used for solving prob-
lems in other fields. The “replacement” program implements a parallel sorting
algorithm.

In general, when possible, the programs written for the C++ library derive
directly from the BSPedupack for Java versions. This is to show that is easy
to port existing programs to our library, requiring only slight adjustements
besides having to change language-specific constructs and data structures. The
sorting program has been instead written originally for our library and later
ported to Java.

All the programs are self-contained and require no input other than the
problem size and the number of desired parallel workers. Each program will
(often randomly) populate the data structures on which the computation will
be performed.

For the purpose of performance metrics calculations, for each parallel pro-
gram a corresponding sequential version has been implemented. When pos-
sible, the sequential algorithm used is the closest version to the parallel one,
using the same data structures.

All the tests have been executed using the same methodology. A suitable
problem size is chosen in advance, large enough for the computation time to
be much higher than the time needed for maintaining parallel structures. The
program is then executed six times with this problem size, starting with paral-
lelism degree 1 and doubling it each time up to a ceiling of p = 64. The time
spent in the parallel portion of every execution is logged. The corresponding
sequential program is also executed with the same problem size, logging the
actual computation time (i.e. not counting data generation).

We call the set of these seven executions a run. Ten runs for each programs
are executed; for each run and each parallism degree we discard the maximum
and minimum times and calculate the average of the remaining ones. This
average time spent in the computation forms the basis for the calculations of
the abovementioned performance metrics. The tests aim to draw comparisons
between three kinds of BSP libraries:

¢ the one presented in this work that uses the FastFlow slab allocator (Sec-
tion 2.2.1)

e a variant of the same one that uses the standard library (STL) allocator;

e the MulticoreBSP for Java library.
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Figure 5.1: An example of cyclic distribution of an array over 3 processors.

5.3.1 Vector inner product

The first program is meant to be a simple introduction to BSP programming.
Given two vectors of n integer numbers

—

X=[xo,x1,-- -, Xp1] Y= [yo, Y1, Ynl

the inner product (or dot product) of the two vectors is defined as follows:
T n—1
Ty=%7" =) xyi (5.4)
i=0

Given the input size 1, the program creates the vector ¥ = [1,2,...,1]
(i.e. x; = i + 1) and calculates the inner product of ¥ with itself:

n—1 n
X-X= Exixi: EZQ.
i=0 i=1

The sequential algorithm simply scans the vector once, accumulating the
squares of the x; elements in a variable. To check for correctness, the known

formula
n

Yy it = %n(n—l—l)(2n+1) (5.5)
i=1
is used for rapidly calculating the correct value.

The BSP algorithm distributes the input array over p processors according
to a cyclic distribution: processor k is assigned all the elements x; such that i
mod p = k. In Figure 5.1 the array cells with the same color are assigned to the
same processor. Each processor then computes (sequentially) the inner product
of its portion of vector and broadcasts the value to all other processors. Finally,
all the processors (reduntantly, but in parallel) sum the received data to obtain
the final result.

The performance metrics for this program were evaluated by running it
with a problem size of n = 2 - 10°. Figure 5.2 shows a comparison of average
latencies (completion time) for the three libraries. (The series shown as “0” on
the plot refers to the sequential program execution.) The MulticoreBSP for Java
implementation performs better (by less than 10%) than either C++ ones when
using a single thread. As the parallelism degree increases, the two C++ imple-
mentations prove to be faster, albeit by a narrow margin. As this is the simplest
BSP program, with very few communications and a sequential portion that can
be easily vectorized by compiler optimizations, these kinds of results are to be
expected. Note that, between the two C++ implementations, the one that uses
the standard allocator achieves lower latencies at any parallelism degree.
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Vector inner product: average time to completion
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Figure 5.2: Average completion time for the vector inner product benchmark on 2B
elements.

Vector inner product: speedup
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Figure 5.3: Speedup for the vector inner product benchmark.

Figure 5.3 shows the speedups achieved by the three libraries. The Java
implementation cannot maintain a near-linear speedup for parallelism degrees
higher than 8, and after p = 16 the gains are minimal (quadrupling the cores
only increases the speedup of a factor ~ 0.6). Both C++ implementations ex-
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hibit a decent speedup up to 32 workers, and even after that the speedup in-
crease is still acceptable, especially for the implementation with the STL allo-
cator. The slab allocator version reaches a sort of middle ground between the
two others.

The trends shown in Figure 5.4 about scalability are similar to the ones of
Figure 5.3. In particular, the Java implementation scalability exhibits almost
the same behavior as its speedup, meaning that it holds Tse; =~ Tpm(l) (i.e.,
the creation and maintenance of structures for supporting parallelism has a
negligible effect on the latency). Conversely, both C++ implementations exhibit
consistently higher scalability than speedup.

Vector inner product: scalability
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Figure 5.4: Scalability for the vector inner product benchmark.

Lastly, Figure 5.5 sums up the behavior of the three implementations with
regards to this program by showing their efficiency parameter. As said before,
the Java library offers good efficiency at low parallelism degrees, but it is out-
classed by the other implementations after p > 4 (and starts to decline rapidly
for p > 8). The C++ library on the other hand exhibits a good level of efficiency,
between 0.9 and 0.95 for both variants up to p = 16. At p = 32 the implemen-
tation that uses the slab allocator begins to fall behind, while the one with the
STL allocator maintains an efficiency of more than 0.9. Finally, at p = 64 both
implementations show a definite decline in efficiency.

5.3.2 Parallel sorting by regular sampling

Sorting is one of the most important and well-studied operations in comput-
ing, as it is used as a subroutine of a large number of programs. Many parallel
algorithms have been designed for this purpose [30, 1, 10], and with the ad-
vent of both new technologies (e.g. GPGPUs) and new use cases (e.g. big data
analysis) sorting continues to be a relevant field of research [48, 43].
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Figure 5.5: Efficiency for the vector inner product benchmark.

Figure 5.6: An example of block distribution of an array over 3 processors.

There exists a number of algorithms for parallel sorting on the BSP model [23,
24]. Between them, we chose Tiskin’s version of the sorting by regular sam-
pling algorithm [55, 46, 32], which is easy to understand and allows us to
illustrate another form of distribution of the input, the block distribution (Fig-
ure 5.6). In this kind of distribution, each processor is assigned a contiguous
block of the input: with a problem of size #n and p processors, each one receives
n/p elements. The block distribution can lead to poor load balancing if n/p is
not an integer number.

The algorithm, as its name implies, is guided by regularly-spaced samples of
the data elements. First of all, each processor sorts its own subarray using a se-
quential algorithm. After that, it selects p + 1 regularly-spaced elements from
the sorted subarray (the first, the (p 4 1)-th, the (2p + 1)-th, ..., the last). We
call these elements the primary samples for that subarray. The p sets of p + 1 pri-
mary samples are then collected and sorted sequentially. The sampling process
is applied again, this time to the sequence of sorted primary samples, to obtain
a set of p 4 1 secondary samples which are broadcast to all the processors. The
secondary samples partition the original array into p blocks. Each processor
sends all elements of the i-th block to the i-th processor. After all the blocks are
distributed, the processors sort (sequentially) the received elements. The input
array is now sorted in the sense that the first processor holds the first (ordered)
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block, the second processor holds the second block, and so on. Optionally, all
blocks can be collected in a single processor afterwards.

The test creates an array ¥ containing the first n = 224 natural numbers and
shuffles it randomly. In this way, the algorithm correctness check is simply
Vi0<i<n:x; =i

The sequential algorithms simply use the respective language library’s sort
function to sort the input. The input array is represented in the same way in
both parallel and sequential applications: in Java it is stored as an
ArrayList<Integer>, in C++ as a std: :vector<int>. This is significant in the
Java case, since sorting an ArrayList<Integer> (using the Collections.sort()
function) can be up to ten times slower with respect to sorting an int[] using
Arrays.sort() !. The performance metrics in the Java case are therefore to be
interpreted having in mind the fact that the sequential program can be vastly
improved by changing the input representation. Conversely, in C++ the differ-
ence between sorting a std: :vector<int>and a int[] is negligible.

We could not obtain data for p = 64 for the Java parallel program. The
execution with this parallelism degree on the machine detailed in Section 5.2
constantly failed with a NullPointerException error encountered when per-
forming communication at the end of a superstep. We did not manage to re-
produce the error on the machine used in the development, which used a more
recent version of the Java Runtime Environment. As the MulticoreBSP for Java
library has not been updated in years, it is unknown what causes this problem.
As a consequence, in the following performance plots, data for p = 64 is only
available for the C++ library.

Parallel sorting by regular sampling: average time to completion
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Figure 5.7: Average completion time for the PSRS benchmark on 2?4 elements.

IThe bottleneck is not in the sorting function, as Collections.sort() actually uses
Arrays.sort() as the sorting subroutine. To the best of our knowledge, the problem lies in the
additional book-keeping needed for maintaining Integer wrappers and ArrayList objects.
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Figure 5.7 shows the average completion time for the sorting benchmark.
The Java implementation actually achieves superlinear speedup for p = 1: in
line with what we said before, this is due to the fact that in the first phase of
the algorithm, the input array is distributed in a structure which relies on an
int[] as the underlying data organization (the BSP_INT_ARRAY class of the Mul-
ticoreBSP for Java library). The other phases of the algorithm use
ArrayList<Integer>, but at that point the array is at least partially ordered.
This may explain the slight advantage in using the parallel program with a
single thread over the sequential one. The C++ implementations do not benefit
from different data organization, so at p = 1 they show the increased latency
due to multiple sorting passes. As the parallelism degree increases, the Java
library shows a modest decrement of latency up to p = 16. The C++ imple-
mentations follow a similar trend, instead managing to decrease latency up to
p = 32. Overall, the C++ implementations are remarkably faster than the Java
one, with the slab allocator version gaining a very slight edge over the STL
allocator one.

Parallel sorting by regular sampling: speedup
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Figure 5.8: Speedup for the PSRS benchmark.

The speedup plot of Figure 5.8 offers an overview of the implementations’
behavior for this benchmark. None of them manage to reach linear speedup,
except for the Java one at p = 1 that we have discussed before. The two C++
implementations do not show noticeable differences between them; they both
achieve better results with regards to the Java implementation for p > 4 and
perform worse for p = 64 than for p = 32. The Java implementation shows
almost constant speedup throughout the test.

Figure 5.9 refers to the scalability metrics of the benchmark. It is similar
to the speedup plot of Figure 5.8 in that no implementation manages to get
closer to linear scalability. We notice, although, that unlike in the other metrics
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Parallel sorting by regular sampling: scalability
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Figure 5.9: Scalability for the PSRS benchmark.

the Java implementation does not perform better than the C++ ones for lower
values of p.

Parallel sorting by regular sampling: efficiency
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Figure 5.10: Efficiency for the PSRS benchmark.

Lastly, Figure 5.10 show the efficiency plot for this benchmark. As we antic-
ipated when talking about speedup, the Java implementation with one worker
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performs slightly better than the sequential program, thus achieving an effi-
ciency greater than 1 (about 1.08). The efficiency rapidly declines as the par-
allelism degree increases: at p = 8 it reaches 20% of the maximum, and the
trend continues only to worsen as p increases. The C++ implementations im-
mediately sink under 0.5 efficiency for p > 2, but manage to outperform the
Java implementation for p > 4. Overall, none of the three libraries provide
satisfying performances for this program.
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Figure 5.11: The group-cyclic distribution withn =16, p =4 and ¢ = 2.

5.3.3 Fast Fourier Transform

Periodic functions are encountered in basically every field, from music to med-
ical imaging to telecommunications and more. On computers, these functions
can only be represented by the value they take at sample points: a song on an
audio CD is sampled 44100 times per second, an MRI image is typically com-
posed by 512 x 512 pixels, and so on. The Discrete Fourier Transform (DFT)
of a sequence of points sampled from a continuous function converts it into
a sequence of points in the frequency domain, which are themselves sample
points of the discrete-time Fourier transform (DTFT). If the DTFT of a continuous
function is known, then — under certain conditions — the original continuous
function can be perfectly recovered from it. The DFT is therefore one of the
fundamental component in digital signal processing and as such has been ex-
tensively studied.

Let X be a vector of n complex numbers ¥ = (x,...,x,_1) € C". The DFT
of X is the vector ¥ = (yo,...,Yn—1) € C" such that

n—1 B
Vo= Y, xje_szk/” 0<k<n (5.6)
=0

The straightforward application of the mathematical definition of DFT over
a sequence of 1 samples has complexity O(n?). The Fast Fourier Transform is
a class of algorithms that compute the DFT of a sequence of length 7 in time
O(nlogn) instead. The BSPedupack (see Section 5.3) contains an adaptation of
the Cooley-Tukey algorithm [18] for calculating the FFT, which has therefore
been ported to our C++ library. A detailed explanation of the BSP algorithm is
outside the scope of this work, and the interested reader can find it in [9]. Here
we limit ourselves to note that the bspfft program employs yet another kind
of distribution for the input, which in a sense is an intermediate step between
the cyclic distribution of Figure 5.1 and the block distribution of Figure 5.6. The
group-cyclic distribution of n elements over p processors with cycle ¢ is defined
as follows: the j-th element of the input is assigned to the k-th processor, where

(e e (o)) wscn e

The distribution is defined for every ¢ such that1 < ¢ < pand pmod c =
0. Figure 5.11 shows an example with n = 16, p = 4, ¢ = 2. This type of
distribution partitions the input into blocks of size [cn/p]; each block is then
assigned to a group of ¢ processors according to the cyclic distribution. For
¢ = 1, the group-cyclic distribution becomes the “normal” block distribution,
while for ¢ = p this reduces to the normal cyclic distribution. The bspfft
program computes the FFT of a vector by redistributing the input at each step,
according to group-cyclic distributions with different parameter ¢, and then
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computing a sequential FFT over the elements in the same processor. In fact,
the redistribution subroutine is the only one that performs communication in
this program.

The sequential implementation of the FFT follows the same general behav-
ior of the parallel version, for consistency. Both sequential and parallel version
actually execute the algorithm twice (once for the direct FFT, once for the in-
verse), so the latency for a single pass can be roughly deducted by halving the
time spent executing the whole program.

Fast Fourier Transform: average time to completion
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Figure 5.12: Average completion time for the FFT benchmark on 225 elements.

Figure 5.12 shows the completion time chart relative to this benchmark. For
p = 1 we notice that the C++ implementations perform faster than the sequen-
tial algorithm, albeit only slightly so. As there’s no communication between
processors even in the parallel version with one worker (since no redistribution
ever happens), similar results with regards to the sequential version were ex-
pected. Both C++ implementations show a good decrease in latency when the
parallelism degree increases. The version that uses the slab allocator generally
performs a little better than its STL allocator counterpart. The Java implemen-
tation, on the other hand, performs poorly for low values of p, requiring at least
4 workers to marginally reduce the latency with respect to the sequential pro-
gram. For p > 8 the decrease in latency is acceptable, though the performance
of the Java library is constantly inferior to both C++ implementations.

The speedup plot of Figure 5.13 confirms the analysis of the previous para-
graph. The Java library never reaches even radical (,/p) speedup, while the
C++ implementations achieve near-linear speedup for p < 8 and good results
up to the ceiling of p = 64, with the slab allocator version performing slightly
better.

Figure 5.14 offers a surprisingly different scenario for low parallelism de-
grees: the Java library manages to attain a slightly superlinear scalability up to
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Fast Fourier Transform: speedup
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Figure 5.13: Speedup for the FFT benchmark.
Fast Fourier Transform: scalability
60
==C++ Library (FF Allocator)
eeeeC++ Library (STL Allocator)
0 == Java Library
| inear
20
2
3
©
© 30
3

Number of cores

Figure 5.14: Scalability for the FFT benchmark.

p < 8. This suggests that the poor absolute performance of this library is due
to setup costs that get amortized at higher parallelism degrees. Once again, the
C++ implementations show good performances for any value of p, although
the scalability increases slowly for p > 32.
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Fast Fourier Transform: efficiency
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Figure 5.15: Efficiency for the FFT benchmark.

The efficiency plot (Figure 5.15) sums up the observations made in the last
few paragraphs. Both C++ versions of the library manage to never fall lower
than 0.8 efficiency until p = 8, with the slab allocator implementation main-
taining the advantage over its counterpart throughout all parallelism degrees.
The Java library, on the other hand, falls early and — after a modest increase for
p = 2 — manages only to maintain a slowly descending rate for the efficiency
metrics.

5.3.4 Matrix LU decomposition

The last algorithm we consider is another numerical one that is widely used in
a broad series of contexts. Let A be a n X n nonsingular matrix and b, x be two
vectors of length 7, of which the second is not known. x is the solution of the
linear system

Ax =b. (.8)

One of the possible methods for solving this system is by employing the LU
decomposition of the matrix A, i.e. finding two n X n matrices L and U such
that L is unit lower triangular and U is upper triangular and

A=1LU.

A n x n matrix M is unit lower triangular if m;; = 1 and m;; = 0 fori < j, and is
upper triangular instead if m;; = 0 fori > j.

The matrices L and U can be used to find solutions of the system Ax = b
by solving the triangular systems

Ly=b and Ux=y (5.9)
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since solving triangular systems is easy (in a mathematical sense). The advan-
tage of LU decomposition over other approaches (e.g. Gaussian elimination) is
that the L and U matrices can be reused when solving a different system such
as

Ax =V

LU decomposition is also used as a step of the solution of various other prob-
lems such as inverting a matrix or calculating its determinant.
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Figure 5.16: Cyclic distribution of a 5 x 5 matrix over 2 x 3 processors.

As with the FFT algorithm, the BSPedupack version of the algorithm was
ported to the C++ library implemented in this work. We again point the reader
to refer to [9] for a detailed explanation of the algorithm, and focus only on the
input distribution and communication patterns. The algorithm actually solves
the related problem

PA=LU

where P is a permutation matrix that reorders the rows of A. This family of
LU decomposition algorithms are called with partial pivoting, since at each step
they find row pivots that guide the computation by indicating which rows to
swap.

Like the vector inner product program, this algorithm makes use of a cyclic
distribution. In order to evenly distribute a matrix, though, processors need
to be (at least logically) organized in a 2D grid. Each processor is assigned a
row index s and a column index ¢t and will be therefore referred as ps;. The BSP
LU decomposition algorithm distributes the input matrix according to a cyclic
distribution over both rows and columns. This means that processors ps. will
each hold an element of row s and processors p.; will each hold an element of
column t. Figure 5.16 shows how a 5 x 5 matrix is distributed over 6 processors
ina2 x 3 grid.

Both the matrix distribution and the processor organization help in reduc-
ing the number of communications at each step. The algorithm requires that
every update of an element in the matrix is broadcast to all the other proces-
sors, so that they can update their own elements. Since this operation is costly,
a two-phase broadcast strategy is employed: in the first phase, the node sends
each element of the vector it must broadcast to a different intermediate peer.
In the second phase, each intermediate node send copies of the received ele-
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Figure 5.17: A two-phase broadcast of a vector of twelve elements over four processors
(taken from [9]).

ment to the final destination. An example of two-phase broadcast is shown in
Figure 5.17.

Initially, the sequential version of both the C++ and Java programs em-
ployed the sequential Doolittle LU decomposition algorithm [54, 11]. Their
performance, however, was much lower than the parallel program using one
thread. We therefore decided to use external libraries for this purpose: ALGLIB
for the C++ version [34] and Apache Commons Math for the Java version [35].

All tests are run on a 5000 x 5000 input matrix. The parallel versions use
the following processor grid configurations:

« 1x1(p=1);
« 1x2(p=2);
« 2x2(p =4
« 2x4(p=8);
e 4 x4(p=16);
e 4 x8(p=32);
e 8x8(p=064).

The average completion time shown in the chart of Figure 5.18 immediately
reveals that this benchmark is by far the heaviest for all the implementations,
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LU decomposition: average time to completion
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Figure 5.18: Average completion time for the LU decomposition of a 5000 x 5000 matrix.

with latencies that in some cases reached over 350 seconds. The sequential
implementation in Java (Apache Commons library) is sensibly less efficient
than the C++ one (ALGLIB), with a latency more than three times higher. Both
C++ implementations of the parallel library exhibit a higher latency with one
worker with respect to the sequential application. The situation improves for
higher parallelism degrees up to p = 16, after which the computation starts
to take longer again. The STL allocator version of the C++ library performes
better than the slab allocator version, especially for p > 16. The Java paral-
lel implementation with a single worker is nearly on par with the sequential
version. After that it behaves like the other two implementations, peaking at
p = 16 and degrading for higher parallelism degrees.
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LU decomposition: speedup
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Figure 5.19: Speedup for the matrix LU decomposition benchmark.

The speedup metrics, by definition, strongly depends on the performance
of the sequential program. Since the C++ one took less than a third of the time
needed for its Java counterpart, it should come to no surprise that the plot of
Figure 5.19 shows the Java parallel library on top. All three implementations
follow a similar trend, slowly increasing for p < 16 and then rapidly decreas-
ing thereafter. The two C++ implementations are basically on par with each
other until the peak at p = 16, after which the slab allocator version falls be-
hind.

Figure 5.20 shows the scalability plot. Since the Java library performs nearly
the same as the sequential version for p = 1, its scalability is practically on par
with its speedup. Conversely, the C++ implementations fare better here, as
they are not compared with the highly efficient ALGLIB sequential program
anymore.

Finally, the efficiency for this benchmark can be found in Figure 5.21. The
same considerations we made for the speedup apply here: the Java implemen-
tation “looks better” due to the relatively poor performance of the sequential
version. The C++ library variants behave the same, with the STL allocator hav-
ing a slight edge. All three implementations reach less than 0.1 efficiency for
p > 32. This poor performance may be explained by the exponentially higher
amount of communication needed for the algorithm as p increases, especially
due to the two-phase broadcast detailed before.
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Figure 5.20: Scalability for the matrix LU decomposition benchmark.
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Figure 5.21: Efficiency for the matrix LU decomposition benchmark.
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5.3.5 Other programs

Some other programs were implemented for this work. The BSPedupack con-
tains a “benchmark” of sorts, called bspbench, that stresses both communica-
tion and computation aspects of the machine on which it runs. It can also be
used to derive the parameters g, h, L of the BSPC implemented in the library.
We provided this program (BSPbench. cpp), along with a custom-designed com-
munication stress test (commstress.cpp) and a battery of unit tests
(unit_tests.cpp), the latter two for checking the correctness of the implemen-
tation.

The bspbench implementation reported the following values on the ma-
chine used for the performance evaluation.

A

8 1
1170.29 597.108 3666.18
1170.29 868.933 35265.2
1170.29 3591.81 91652.2
1170.29 6183.59 215230
1170.29 12593.1 465453
1170.29 51731.2 1916450

A Mflops/s

BERo e NR|T

Figure 5.22: BSP parameters for the Phi machine as reported by bspbench.

54 Summary

In this Chapter we measured the performance of the library implemented in
this work on a variety of commonly-used applications, both numerical and
non-numerical. The experimental results are very promising: while the ab-
solute performance depends on the algorithm, the BSP implementations that
used our library showed a decent-to-good increase in performance at any par-
allelism degree. The other main “competitor” in the field of object-oriented
modern BSP implementations, the MulticoreBSP for Java library, is consistently
outranked by our solution. Although the native difference in performance be-
tween the Java and C++ languages helped achieving good results, we consider
our implementation choices to have played a bigger role in determining the
final difference in performance.
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Chapter 6

Conclusion

In this thesis we introduced the design and implementation of a C++ library
for the Bulk Synchronous Parallel paradigm, targeting shared memory mul-
ticore machines. The architectural design draws its inspiration from Tiskin’s
BSPRAM model [55], but maintains the communication and the shared mem-
ory as separate concepts. The implementation uses the compositional capabil-
ities of the FastFlow framework to build its internal structure, which happens
to be a plain farm template, actually. The library can also be considered an ex-
tension of FastFlow, as the whole BSP computation ultimately takes place in a
FastFlow node which can be freely used inside any other parallel pattern.

Both the design and implementation aspects of the library varied a lot dur-
ing the development of this work. At first, we thought about providing an
all-new programming style for BSP computations: each superstep would be
represented as a C++ object superstep<Tin, Tout>, with clearly defined input
and output types. These objects were to be given, in the desired order, to a
BSP “executor” that would regulate the superstep flow and perform the re-
quested communications. We soon realized that this programming style was
not necessarily easier to use, instead proving to be hugely limiting on the com-
munication capabilities (each node could only send either a single object or a
collection of same-type objects per superstep).

After this “superstep-centric” draft, we briefly reasoned upon an architec-
ture where nodes were arranged in a fully or partially connected mesh, in order
to remove the need for an entity that manages communications. The channels
between nodes were to be implemented using FastFlow SPSC queues (see Sec-
tion 2.2). This approach was quickly dismissed, as a fully connected mesh
would require a huge number of queues even for modest parallelism degrees
(with 64 nodes there need to be 4096 channels), and a partially connected mesh
would not improve communication times too much. Moreover, this approach
didn’t fully utilize FastFlow’s parallel patterns, instead relying on its low-level
mechanisms. While this is certainly allowed by the framework, we wanted to
exploit the easiness of use provided by its algorithmic skeletons.

Finally, we converged to a satisfying architectural model and implementa-
tion scheme, the ones we discussed in Chapters 3 and 4. Of course there was
still a lot to improve: particular focus was given on finding the most efficient
representation of shared objects in the memory, due to the difficulties of hav-
ing to work with heterogeneous data to be stored inside a single container.
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Another aspect that required particular attention was the requests mechanism,
as it put a lot of stress on the number of end-of-superstep operations to be exe-
cuted, leading to a lower performance. A common pattern we noticed in many
BSP computations was that nodes often performed a high number of commu-
nication requests per superstep, but each communication only regarded one
or few data elements (which, we remind, must be copied into the request ob-
ject). The communicator therefore had to continuously allocate and deallocate
many small request objects. We reasoned that the standard C++ allocator could
be less efficient in this scenario, and sought after different allocation schemes
which better suited our needs. Fortunately, FastFlow provided a custom solu-
tion based on the slab allocator (Section 2.2.1), which was therefore used in the
library.

At the end of this implementation phase we obtained a final product that
matched the goals we set for ourselves. The library provides support for BSP
programs with a simple and clean APL. The run-time support relieves users
from having to manage memory operations and shared variable registration
and deregistration, unlike many other BSP libraries. Programmers can code in
a lean and modern way, relying on the object-oriented paradigm and support-
ing all C++11 (and above) features. The BSP computation can be performed
over any type of data, including user-defined classes and objects. As we will
see in a moment, the library’s performance is sound, as it shows good scala-
bility for basically any parallelism degree. The library is also integrated in the
FastFlow framework, as the BSP computation can use input data received from
other nodes and can send output to them.

We extensively tested our solution, both during and after the final stages
of development. For conducting performance analysis, we chose four BSP al-
gorithms to be used as benchmark and implemented them. Each one of those
programs feature a different communication scheme and a different partition-
ing of the input between nodes. Three of the four programs are taken from
Bisseling’s BSPedupack [9], a collection of BSP algorithms for solving common
numerical problems. The last one is a sorting algorithm, a crucial operation in
basically any field of computer science. Each program was run multiple times
using a different number of worker units, to check how the library performed
at different parallelism degrees. In addition to the “normal” library, we also
ran tests over a variant of the final implementation that used the standard C++
STL allocator, to test if the slab allocator effectively improved performance. We
compared our results with identical tests for the MulticoreBSP for Java library.
We used the BSPedupack for Java implementation of the three edupack pro-
grams and wrote our own BSP sorting program for Java.

The experimental results proved that our implementation is sound. We
consistently achieved lower latencies than the Java library, with a large enough
margin that allows us to ignore the inherent gap between the two languages.
In some cases, our implementation was over ten times faster than the equiv-
alent Java version. With few exceptions, our implementation also presented
better scalability for any parallelism degree up to the machine’s number of
cores (in this case, 64). Lastly, we obtained good results also for the speedup
and efficiency parameters, after factoring that C++ sequential versions of the
programs were faster than Java ones, therefore “polluting” these two last per-
formance indices. To our surprise, both the STL allocator version and the slab
(FastFlow) allocator one produced similar results. We expected the slab alloca-
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Figure 6.1: FastFlow graph of a possible implementation of the MultiBSP model. The
solid line nodes compose the MultiBSP tree.

tor version to gain a more consistent edge in the abovementioned scenario of
many requests with small payloads.

6.1 Future work

As mentioned above, the fact that the STL allocator provide similar results to
the slab allocator (even outperforming it in some scenarios) can be studied
more in-depth. A reasonable approach would be to allow the programmer to
choose the desired allocation strategy, potentially even letting him /her specify
a custom allocator.

An interesting direction for future work is the implementation of the Multi-
BSP model (introduced in [60]) via exploitation of FastFlow’s compositional
capabilities. Since the whole BSP computation is already a FastFlow node, a
nested BSP run can be achieved simply by allowing the computation node to
act as a BSP node, therefore becoming part of the broader composition. The
MultiBSP tree in this case corresponds to the FastFlow graph, minus the farm
emitter and collector entities (Figure 6.1).

We could, lastly, exploit FastFlow’s support for different architectures in or-
der to provide other BSP variants. For example, we can use FastFlow ff_dnodes
[4] to run BSP programs on a distributed computer, therefore “closing the cir-
cle” by providing support for the same architecture described in Valiant’s sem-
inal work. Another interesting topic, in the same vein, could be to provide
support for offloading work to GPU accelerators. Both these directions also
work well within the abovementioned MultiBSP paradigm.

While these features weren’t implemented due to time constraints, we ul-
timately feel that they concern a slightly broader scope that the one we con-
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sidered in this work, namely to realize an efficient and simple-to-use BSP li-
brary for shared-memory multicores integrated in the FastFlow framework.
We think that the implementation we provided in this thesis matched our
goals.
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Appendix A

Library quick start

This Appendix details the API documentation for the library, i.e. public meth-
ods and fields that the programmer can use to build a BSP program. A com-
plete documentation, which includes private and internally-used methods and
fields, is available as Doxygen comments in the source code. The closing Sec-

tions provide additional clarifications about some mechanisms of the
bsp_variable and bsp_array classes.

A.1 API documentation

A.1.1 bsp_program Class Reference

#include <bsp_program.hpp>

Inheritance diagram for bsp_program:

ff_node

bsp_program

Public Member Functions

bsp_program(std: :vector<std: :unique_ptr<bsp_node>>&& _processors,
std::function<void(void)> _pre = nullptr,
std::function<void(void)> _post = nullptr)

void start(voidx in = nullptr)

void* svc(void* in) override

Class Description

Implements the Bulk Synchronous Parallel pattern as a FastFlow node.
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Constructor Documentation

bsp_program()

explicit bsp_program(std::vector<std::unique_ptr<bsp_node>>&& _processors,
std::function<void(void)> _pre = nullptr,
std::function<void(void)> _post = nullptr)

Constructor for the bsp_program object.

Parameters
_processors | vector of BSP nodes for the computation
_pre optional function to be executed before the BSP
computation
_post optional function to be executed after the BSP computation

Member Function Documentation
start(voidx)
void start(void* in = nullptr)

Creates the FastFlow inner graph and executes the BSP computation.

Parameters

[ in | optional, the input token received from the preceding FastFlow node |
{ ]

svc(voidx)

void* svc(voidx in) override

Service function for the BSP program node. Starts the BSP computation.

Parameters
| in [ input token received from the preceding FastFlow node |

Returns
GO_ON, a special FastFlow token to continue the broader computation

A.1.2 bsp_node Class Reference
#include <bsp_node.hpp>

Inheritance diagram for bsp_node:

ff node

F ¥

bsp_node
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Public Member Functions

® void+ svc(voidx in) final

Protected Member Functions

® void emit_output(void* payload)

® template <typename T>
bsp_variable<T> get_variable(const T& initial_value)

® template <typename T>
bsp_array<T> get_array(const std::vector<T>& initial_value)

® template <typename T>
bsp_array<T> get_array(std::vector<T>* handle)

® template <typename T>
bsp_array<T> get_empty_array(int size)

® int bsp_pid()
® int bsp_nprocs()
® void bsp_sync()

® virtual void parallel_function() = 0

Protected Attributes

® const voidx fastflow_input

Pointer to the FastFlow input token

Class Description
Specialization of a ff_node to work as the unit of computation in the BSP
model.
Member Function Documentation
bsp_nprocs()
int bsp_nprocs()
Returns the number of nodes in the current BSP computation.

Returns
the number of nodes in the current BSP computation.

bsp_pid()
int bsp_pid()

Returns the ID for this node.
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Returns
this node’s ID.

bsp_sync()
void bsp_sync()

Terminates the current superstep and waits for the other nodes to sync.

emit_output(voidsx)
void emit_output(void+ payload)
Forwards an output token to the next stage in the FastFlow graph.

Parameters
| payload | the token to forward |

get_array(const std::vector<T>&)

template <typename T>
bsp_array<T> get_array(const std::vector<T>& initial_value)

Requests a new array with elements of type T from the communicator, initial-

izing it with the copy a given vector.

Template Parameters
[ T | the type of elements of the requested array |

Parameters
[ initial_value | value to copy inside this node’s private copy of the array |

Returns
a handle to this node’s private copy of the shared array

get_array(std::vector<T>x*)

template <typename T>
bsp_array<T> get_array(std::vector<T>*x handle)

Requests a new array with elements of type T from the communicator, initial-
izing it with the pointer to a vector. Any modifications done to the initializing
vector after the call to this method are inherently BSP unsafe.

Template Parameters
| T | the type of elements of the requested array |

77



Parameters
handle | a pointer to the vector that will become this node’s private copy

of the shared array

Returns
a handle to this node’s private copy of the shared array

get_empty_array(int)

template <typename T>
bsp_array<T> get_empty_array(int size)

Requests a new array with elements of type T from the communicator, initial-
izing it with an empty vector of given size.

Template Parameters
[ T | the type of elements of the requested array |

Parameters
size | the size of the empty vector that will become this node’s private

copy of the shared array

Returns
a handle to this node’s private copy of the shared array

get_variable(const T&)

template <typename T>
bsp_variable<T> get_variable(const T& initial_value)

Requests a new variable of type T from the communicator.

Template Parameters
| T | the type of the requested variable |

Parameters
initial_value | value to copy inside this node’s private copy of the
variable
Returns

a handle to this node’s private copy of the shared variable

parallel_function()
virtual void parallel_function() = 0;

Function to be overwritten as the main parallel execution.
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svc(voidx)

void+ svc(void+ in) final
The FastFlow node service method. Implementations of this class cannot rede-
fine it.

Parameters
[ in | the input token (in this case, a special value ENDCOMP) |

Returns
the same token as the input

A.1.3 bsp_variable<T> Template Class Reference
#include <bsp_variable.hpp>

Inheritance diagram for bsp_variable<T>:

bsp_container

bsp variable< T >

Public Member Functions

® T get()

® void bsp_put(const T& elem, int destination)

® void bsp_put(const bsp_variable<T>& other)

® void bsp_put(const bsp_variable<T>& other, int destination)
® void bsp_put(int destination)

® void bsp_get(int source) override

® T bsp_direct_get(int source)

® T& BSPunsafe_access()

Class Description
A variable data structure, private to a single worker but with support for com-

munication with other similar entities.

Template Parameters
| T | type of the variable |

Member Function Documentation
bsp_direct_get(int source)
T bsp_direct_get(int source)

Returns a copy of a node’s private element of this shared variable. This method
will return immediately, without waiting for a superstep sync.
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Parameters
[ source | ID of the source node |

Returns
a copy of the desired element

bsp_get(int source)
void bsp_get(int source) override

Replaces this node’s private element with another node’s private element of
this shared variable.

Parameters
[ source | ID of the source node |

bsp_put(const bsp_variable<T>&)
void bsp_put(const bsp_variable<T>& other)

Replaces this node’s private element with this node’s private element of an-
other shared variable.

Parameters
[ other | the handle to the other shared variable |

bsp_put(const bsp_variable<T>&, int)
void bsp_put(const bsp_variable<T>& other, int destination)

Replaces another node’s private element with this node’s private element of
another shared variable.

Parameters
other the handle to the other shared variable
destination | ID of the destination node

bsp_put(const T&, int)
void bsp_put(const T& elem, int destination)

Replaces another node’s private element of the shared variable.

Parameters
elem element to be copied
destination | ID of the destination node
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bsp_put(int)
void bsp_put(int destination)
Replaces another node’s private element with this node’s private element of

the shared variable.

Parameters
| destination | ID of the destination node |

BSPunsafe_access()
T& BSPunsafe_access()

Returns a handle to this node’s private element of the shared variable. The
returned object can be modified at will, without waiting for superstep syncs.
This function is BSP unsafe.

Returns
a reference to the node’s private element of the shared variable

get()
T get()
Returns a copy of the node’s private element of the shared variable.

Returns
a copy of the desired element

A.14 bsp_array<T> Template Class Reference

#include <bsp_array.hpp>

Inheritance diagram for bsp_array<T>:

bsp_container

bsp_array< T >



Public Member Functions

® T get()

® std::vector<T> get()

® int size()

® void BSPunsafe_put(const T& elem, int pos)

® void bsp_put(const T& elem, int pos)

® void bsp_put(const bsp_variable<T>& elem, int pos)

® void bsp_put(const T& elem, int destination, int pos)

® void bsp_put(const bsp_variable<T>& elem, int destination, int pos)
® void bsp_put(const std::vector<T>& array)

® void bsp_put(const bsp_array<T>& other)

® void bsp_put(const std::vector<T>& array, int destination)
® void bsp_put(const bsp_array<T>& other, int destination)

® void bsp_put(const std::vector<T>& array, int src_offset,
int dest_offset, int length)

® void bsp_put(const bsp_array<T>& other, int src_offset,
int dest_offset, int length)

® void bsp_put(const std::vector<T>& array, int destination,
int src_offset, int dest_offset, int length)

® void bsp_put(const bsp_array<T>& other, int destination,
int src_offset, int dest_offset, int length)

® void bsp_get(int from) override

® void bsp_get(int from, int from_offset, int to_offset, int length)
® T bsp_direct_get(int source, int pos)

® std::vector<T> bsp_direct_get(int source)

® std::vector<T>& BSPunsafe_access()

Class Description
An array structure, private to a single worker but with support for communi-

cation with other similar entities.

Template Parameters
[ T | type of the elements contained in the array |

Member Function Documentation
bsp_direct_get(int)
std::vector<T> bsp_direct_get(int source)
Returns a copy of another node’s private array. This method will return imme-

diately, without waiting for a superstep sync.

Parameters
[ source [ ID of the source node |
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Returns
the source’s private copy of the shared array

bsp_direct_get(int, int)
T bsp_direct_get(int source, int pos)

Returns a copy of the element at the desired position from another node’s copy
of the array. This method will return immediately, without waiting for a super-
step sync.

Parameters

source | ID of the source node

pos position of the desired element
Returns

the element of the source’s private copy at the desired position

]
bsp_get(int)
void bsp_get(int from) override
Replaces the node’s private copy of the array with another node’s private copy.

Parameters
] from \ ID of the source node \

bsp_get(int, int, int, int)
void bsp_get(int from, int from_offset, int to_offset, int length)

Replaces a portion of the node’s private copy of the array with a portion of
another node’s private copy.

Parameters
from ID of the source node
from_offset | starting position of the replacing portion
to_offset starting position of the portion to be replaced
length length of the replacing portion

bsp_put(const bsp_array<T>&)
void bsp_put(const bsp_array<T>& other)

Replaces the node’s private copy of the array with the vector contained inside
another bsp_array.
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Parameters
other | other bsp_array containing the vector that will replace the current

one

bsp_put(const bsp_array<T>&, int)
void bsp_put(const bsp_array<T>& other, int destination)

Replaces another node’s private copy of the array with this node’s private copy
of the vector contained inside another bsp_array.

Parameters
other other bsp_array containing the vector that will replace the

current one
destination| ID of the destination node

bsp_put(const bsp_array<T>&, int, int, int, int)

void bsp_put(const bsp_array<T>& other, int destination,
int src_offset, int dest_offset, int length)

Replaces a portion of another node’s private copy of the array with a portion
of this node’s private copy of the vector contained inside another bsp_array.

Parameters
other other bsp_array containing the vector with the desired
portion
destination | ID of the destination node
src_offset | starting position of the replacing portion
dest_offset | starting position of the portion to be replaced
length length of the replacing portion

bsp_put(const bsp_array<T>&, int, int, int)

void bsp_put(const bsp_array<T>& other, int src_offset,
int dest_offset, int length)

Replaces a portion of this node’s private copy of the array with a portion of
this node’s private copy of the vector contained inside another bsp_array.

Parameters
other other bsp_array containing the vector with the desired

portion

src_offset starting position of the replacing portion
dest_offset | starting position of the portion to be replaced
length length of the replacing portion

84



bsp_put(const bsp_variable<T>&, int, int)
void bsp_put(const bsp_variable<T>& elem, int destination, int pos)

Puts an element (contained in a bsp_variable) into the given position in an-
other node’s private copy of the array.

Parameters
elem bsp_variable that contains the element to be inserted
destination ID of the destination node
pos position in the array

bsp_put(const bsp_variable<T>&, int)
void bsp_put(const bsp_variable<T>& elem, int pos)
Puts an element (contained in a bsp_variable) into the given position in this

node’s private copy of the array.

Parameters
elem | bsp_variable that contains the element to be inserted

pos | position in the array

bsp_put(const std::vector<T>&)
void bsp_put(const std::vector<T>& array)

Replaces the node’s private copy of the array with the given vector.

Parameters
array | vector that will replace the current private copy of the shared
array

bsp_put(const std::vector<T>&, int)
void bsp_put(const std::vector<T>& array, int destination)

Replaces another node’s private copy of the array with the given vector.

Parameters
array vector that will replace the current private copy of the

shared array
destination | ID of the destination node
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bsp_put(const std::vector<T>&, int, int, int, int)

void bsp_put(const std::vector<T>& array, int destination,
int src_offset, int dest offset, int length)

Replaces a portion of another node’s private copy of the array with a portion
of the given vector.

Parameters
array vector that will replace the current private copy of the

shared array

destination | ID of the destination node

src_offset | starting position of the replacing portion
dest_offset | starting position of the portion to be replaced
length length of the replacing portion

bsp_put(const std::vector<T>&, int, int, int)

void bsp_put(const std::vector<T>& array, int src_offset,
int dest_offset, int length)

Replaces a portion of this node’s private copy of the array with a portion of the
given vector.

Parameters
array vector that will replace the current private copy of the

shared array

src_offset | starting position of the replacing portion
dest_offset | starting position of the portion to be replaced
length length of the replacing portion

bsp_put(const T&, int, int)
void bsp_put(const T& elem, int destination, int pos)

Puts an element into the given position in another node’s private copy of the
array.

Parameters
elem element to be inserted
destination ID of the destination node
pos position in the array

bsp_put(const T&, int)
void bsp_put(const T& elem, int pos)

Puts an element into the given position in this node’s private copy of the array.
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Parameters
elem element to be inserted

pos position in the array

BSPunsafe_access()
std::vector<T>& BSPunsafe_access()

Returns a handle to this node’s private element of the shared array. The re-
turned object can be modified at will, without waiting for superstep syncs.
This function is BSP unsafe.

Returns
a reference to the node’s private copy of the array

BSPunsafe_put(const T&, int)
void BSPunsafe_put(const T& elem, int pos)

Puts an element into the contained array in the desired position. This function
is BSP unsafe.

Parameters
elem element to be inserted
pos position in the array
®
get()

std::vector<T> get()

Returns a copy of the node’s private element of the shared array.

Returns
a copy of the array

get(int)
T get(int position)
Returns a copy of the element in a given position of the node’s private copy of

the shared array.

Parameters
[ position [ position in the array |
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Returns
a copy the array element in the desired position

size()
int size()

Returns the size of the array.

Returns
the size of the array

A.2 Variable/array request mechanism

The main way to perform communication between BSP processors is using
bsp_variables (or their specialization bsp_arrays). bsp_variable<T>s are spe-
cial containers that hold an element of type T for each BSP node, i.e. each node
will refer to a different - private - element using the same bsp_variable handle.

bsp_arrays are specializations of bsp_variables for variable-sized array
types. A bsp_array<T>isbasically equivalent to a bsp_variable<std: :vector<T>>,
except it also provides functions to efficiently get and put single elements or
portions of the array instead of having to work with the whole object. In the fol-
lowing, any mention of bsp_variable mechanisms is also valid for bsp_arrays,
unless where noted.

bsp_variable objects cannot be built using the standard initialization tech-
niques; instead, they are created by the appropriate get_variable<T> method
of the bsp_node class. In reality, bsp_variable objects are mere handles to the
actual containers, which have different lifecycles. A new underlying container
for variables of type T is created by the system when a BSP node requests one
more bsp_variable<T> than the other BSP nodes; when the other BSP nodes
"catch up" and make one more request for another bsp_variable<T>, the sys-
tem gives them a handle to this freshly-created container. In short, for all nodes
it holds the following:

Proposition 2. The bsp_variable<T> object obtained by the n-th consecutive
call to get_variable<T> in a given superstep is a handle for the n-th container
of objects of type T, regardless of everything else such as variable names.
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The following example (listing A.1) helps understand these mechanisms.
Suppose we have a BSP program with two nodes that execute this program:

void parallel_function() override {
int id = bsp_pid();
if (id == 0) {
auto vl = get_variable<int>(0);
sleep(1000);
auto v2 = get_variable<int>(0);
auto v3 = get_variable<double>(0.0);

}
if (id == 1) {
sleep(100);
auto vl = get_variable<double>(1.1);
auto v2 = get_variable<int>(1);
auto v3 = get_variable<int>(1);
}

Listing A.1: The code for the example.

The nodes request the same number of variables for each type, but in a dif-
ferent order. (The sleep functions are to emphasize the order of execution.)
What happens is that the two nodes will call the same shared object with dif-
ferent names.

1. Node 0 requests a variable of type int. This is request number 1 for this
node and this type, but globally the system has reserved 0 containers
for type int. The system thus creates a container for an int variable:
this container will reserve space for two ints. The system then sets the
first int to 0 (as requested by Node 0) and returns a bsp_variable<int>,
which is an handle to the aforementioned container and in particular to
the element assigned to Node 0. This bsp_variable<int> has the name
vl in the environment of Node 0.

2. Node 1 requests a variable of type double. The system creates a new
container of double elements, sets the element corresponding to Node 1
to 1.1, and returns the handle to this element to Node 1 as a
bsp_variable<double> named v1. Note that Node 0’s vl and Node 1’s
v1 point to two different containers of different types.

3. Node 1 requests a variable of type int. This is the first request done
by Node 1 for such a variable, and globally the system has already re-
served a container of type int. No new containers are created: the sec-
ond int of the existing container is set to 1, as requested by Node 1, and
a bsp_variable<int> which refers to this element is returned to Node 1.
This bsp_variable<int> has the name v2 in the environment of Node 1,
but it actually refers to the same container as Node 0’s v1! If Node 0 were
to call v1.bsp_put(5, 1) (see next subsection), this operation would ac-
tually change the element referred by Node 1 with the name v2 after a
superstep sync (i.e. v2.get () would return 5 after a superstep sync).
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4. Node 1requests a variable of type int. This is the second request for such
a variable, but globally there’s only one int container, so the system cre-
ates a new one. Node 1’s handle for this containeris a bsp_variable<int>
named v3.

5. Node 0 requests a variable of type int. It's the second request for such a
variable and there are already two containers of type int, so the system
returns a handle to the second container, which is a bsp_variable<int>
named v2.

6. Node 0 requests a variable of type double. It’s the first request for such
a variable and there’s already one container of type double, so the sys-
tem returns a handle to this container, which is a bsp_variable<double>
named v3. Node 0’s v3 and Node 1’s v1 refer to the same container.

Node 0 Containers Node 1

@\ 0] type [1]
0 int 1
(=)
(=)

0.0 | double; |[1.1 @
0 intp 1 \@

Figure A.1: An example of the difference between bsp_variables and their underlying
containers.

A.3 A note on BSPunsafe methods

Both bsp_variable and bsp_array classes feature a few methods, identified
by the prefix BSPunsafe, that allows the user to directly access the node’s pri-
vate copy of the shared object. Another way to gaining "direct access" to a
bsp_array is by requesting it via the get_array<T>(pointer) method; the vec-
tor pointed by pointer is the same entity as the element in the container. This
type of access to data is "BSP-unsafe" in the sense that it doesn’t fit well with
BSP directives (get and put). For example, if node n modifies its element
with BSPunsafe_access() during superstep k and another node m performs
a bsp_put() on the same element in the same superstep, at the beginning of
superstep k + 1 the value held in n’s element will be the one written by m (as
bsp_put () writes are performed at the end of the superstep, overwriting any
modification previously made). If the data will be used in a read-only way, it’s
advisable to get a copy using the bsp_direct_get () methods.

The BSP-unsafe methods can nevertheless be useful when properly man-
aged; some of the test programs (i.e. the Fast Fourier Transform and LU decom-
position) use them for easier access to private copies, saving some superstep
synchronizations. Other BSP implementations (e.g. MulticoreBSP for Java) also
provide similar methods.
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Appendix B

Source code

B.1 BSP Library for FastFlow

bsp_array.hpp

#ifndef FF_BSP_BSP_ARRAY_HPP
#define FF_BSP_BSP_ARRAY_HPP

#include <type_traits>
#include <vector>
#include "bsp_variable.hpp"

/ k%
* An array structure, private to a single worker but with support
* for communication with other similar entities.
*
* @tparam T type of the elements contained in the array.
*/
template<typename T>
class bsp_array : bsp_container {

// The template type must be copy-constructible and copy-assignable
static_assert(std::is_copy_constructible<T>::value &&
std::is_copy_assignable<T>::value,
"Type of elements of bsp_array must be copy-constructible "
" and copy-assignable");

private:

// bsp_communicator can access private fields of this class
friend class bsp_communicator;

VAT
* Pointer to the actual vector data.
*/

std::vector<T>x arr;

/ *%
* Default constructor.
*/

bsp_array() = default;

/ *%

91




39

40

41

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

85

86

87

88

89

90

91

92

93

94

95

96

* Builds a bsp_array object that holds a node's private copy of a shared
* array.

*

* @param _ref ID of the shared array

* @param _hold ID of the requesting node

* @param comm pointer to the communicator component

* @param ptr pointer to the node's private copy

*/

bsp_array(int _ref, int _hold, bsp_communicator* comm,
std::vector<T>x* ptr)
bsp_container(_ref, _hold, comm), arr{ptr} {

VA
* Returns the shared object type (in this case, an array).
* @return the \c vartype value for arrays
*/
vartype var_type() final {
return vartype::array;

public:

/*%
* Returns a copy of the element in position <tt>position</tt> of the
* node's private copy of the shared array.
* @param position position of the desired element
* @return a copy the array element in the desired position
*/
T get(int position) {
return arr->at(position);

/*%
* Returns a copy of the node's private copy of the shared array.
* @return a copy of the array
*/
std::vector<T> get() {
return *arr;

VAT
* Returns the size of the array.
* @return the size of the array
*/
int size() {
return arr->size();

* Puts an element into the contained array in the desired
* position. This function is <b>BSP unsafe</b>.
* @param elem element to be copied
* @param pos position in the array
*/
void BSPunsafe_put(const T& elem, int pos) {
arr->at(pos) = elem;
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* Puts an element into the given position in this node's private copy of
* the array.
* @param elem element to be inserted
* @param pos position in the array
*/
void bsp_put(const T& elem, int pos) {
bsp_put(elem, holder, pos);

/*%
* Puts an element (contained in a <tt>>bsp_variable</tt>) into the given
* position in this node's private copy of the array.
* @param elem \c bsp_variable that contains the element to be inserted
* @param pos position in the array
*/
void bsp_put(const bsp_variable<T>& elem, int pos) {
const auto& t = x(elem.element);
bsp_put(t, pos);

}
VES:
* Puts an element into the given position in another node's private copy of
* the array.
* @param elem element to be inserted
* @param destination ID of the destination node
* @param pos position in the array
*/

void bsp_put(const T& elem, int destination, int pos) {
comm->array_put(reference, holder, destination, pos, elem);

}
/*%
* Puts an element (contained in a <tt>>bsp_variable</tt>) into the given
* position in another node's private copy of the array.
* @param elem \c bsp_variable that contains the element to be inserted
* @param destination ID of the destination node
* @param pos position in the array
*/

void bsp_put(const bsp_variable<T>& elem, int destination, int pos) {
const auto& t = x(elem.element);
bsp_put(t, destination, pos);

/*x
* Replaces the node's private copy of the array with the given vector.
* @param array vector that will replace the current private copy of the
* array
*/
void bsp_put(const std::vector<T>& array) {
comm->array_put(reference, holder, 0, holder, 0, 0, array);

/ *x
* Replaces the node's private copy of the array with the vector
* contained inside another <tt>bsp_array</tt>.
* @param other <tt>bsp_array</tt> containing the vector that will
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* replace the current one
*/
void bsp_put(const bsp_array<T>& other) {
const auto& t = *x(other.arr);
bsp_put(t);

VAL
* Replaces another node's private copy of the array with the given vector.
* @param array vector that will replace the current private copy of the
* array
* @param destination ID of the destination node
*/
void bsp_put(const std::vector<T>& array, int destination) {
comm->array_put(reference, holder, 0, destination, 0, 0, array);

VAT
* Replaces another node's private copy of the array with the vector
* contained inside the given <tt>bsp_array</tt>.
* @param other <tt>bsp_array</tt> containing the vector that will
* replace the current private copy of the array
* @param destination ID of the destination node
*/
void bsp_put(const bsp_array<T>& other, int destination) {
const auto& t = x(other.arr);
bsp_put(t, destination);

/*%
* Replaces a portion of this node's private copy of the array with a
* portion of the given vector.
* @param array vector that contains the desired portion
* @param src_offset starting position of the replacing portion
* @param dest_offset starting position of the portion to be replaced
* @param length length of the replacing portion
*/
void bsp_put(const std::vector<T>& array, int src_offset, int dest_offset,
int length) {
comm->array_put(reference, holder, src_offset, holder, dest _offset,
length, array);

VAT

Replaces a portion of this node's private copy of the array with a
portion of the vector contained inside the given <tt>bsp_array</tt>.
@param other <tt>bsp_array</tt> containing the vector that contains
the desired portion

@param src_offset starting position of the replacing portion

@param dest_offset starting position of the portion to be replaced
@param length length of the replacing portion

* X X X X X %

*/
void bsp_put(const bsp_array<T>& other, int src_offset, int dest_offset,
int length) {
const auto& t = *(other.arr);
bsp_put(t, src_offset, dest_offset, length);
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/ *%

Replaces a portion of another node's private copy of the array with a
portion of the given vector.

@param array vector that contains the desired portion

@param destination ID of the destination node

@param src_offset starting position of the replacing portion

@param dest_offset starting position of the portion to be replaced
@param length length of the replacing portion

* K X X X X X

*/
void bsp_put(const std::vector<T>& array, int destination, int src_offset,
int dest_offset, int length) {
comm->array_put(reference, holder, src_offset, destination, dest_offset,
length, array);

/*%

Replaces a portion of another node's private copy of the array with a
portion of the vector contained inside the given <tt>bsp_array</tt>.
@param other <tt>bsp_array</tt> containing the vector that contains
the desired portion

@param destination ID of the destination node

@param src_offset starting position of the replacing portion

@param dest_offset starting position of the portion to be replaced
@param length length of the replacing portion

* X X X X X X ¥

*/
void bsp_put(const bsp_array<T>& other, int destination, int src_offset,
int dest_offset, int length) {
const auto& t = x(other.arr);
bsp_put(t, destination, src_offset, dest_offset, length);

VA
* Replaces the node's private copy of the array with another node's
* private copy.
* @param from ID of the source node
*/
void bsp_get(int from) override {
comm->array_get<T>(reference, from, 0, holder, 0, 0);

/* %
* Replaces a portion of the node's private copy of the array with a
* portion of another node's private copy.
* @param from ID of the source node
* @param from_offset starting position of the replacing portion
* @param to_offset starting position of the portion to be replaced
* @param length length of the replacing portion
*/
void bsp_get(int from, int from_offset, int to_offset, int length) {
comm->array_get<T>(reference, from, from_offset, holder, to_offset,

length);
}
VAT
* Returns a copy of the element at the desired position from another node's
* copy of the array. This method will return immediately, without
* waiting for a superstep sync.
* @param source ID of the source node
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* @param pos position of the desired element
* @return the element of the source's private copy at the desired position
*/
T bsp_direct_get(int source, int pos) {
return comm->array_direct_get<T>(reference, source, pos);

VAL
* Returns a copy of another node's private array. This method will return
* immediately, without waiting for a superstep sync.
* @param source ID of the source node
* @return the source's private copy of the shared array
*/
std::vector<T> bsp_direct_get(int source) {
return comm->array_direct_get<T>(reference, source);

VAT
* Returns a handle to this node's private copy of the shared array. The
* returned object can be modified at will, without waiting for superstep
* Syncs.
* This function is <b>BSP unsafe</b>.
* @return a reference to the node's private copy of the array
*/
std::vector<T>& BSPunsafe_access() {
return xarr;

+

#endif //FF_BSP_BSP_ARRAY_HPP

bsp_barrier.hpp

#ifndef FF_BSP_BSP_BARRIER_HPP
#define FF_BSP_BSP_BARRIER_HPP

#include <mutex>

/ k%
* A simple reusable barrier.
*/

class bsp_barrier {

private:

//! Mutex for access to the barrier

std: :mutex mutex;

//! Condition variable for the wait/notify mechanism
std::condition_variable cond_var;

//! The number of workers that need to access the barrier before
//! unlocking it.

int threshold = 0;

//! Current count of workers at the barrier

int count = 0;

//! Number of times the barrier has been used

int generation = 0;
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public:

/*%
* Deleted default constructor.
*/

bsp_barrier() = delete;

/*%
* Creates a barrier for a certain number of threads.
* @param size the number of threads that will access the barrier

*/
explicit bsp_barrier(int size)
threshold{size},
count{size},
generation{0} {
}
/*%

* Copy constructor.
* @param other the other <tt>bsp_barrier</tt> object to copy.
*/
bsp_barrier(const bsp_barrier& other)
threshold{other.threshold},
count{other.count},
generation{other.generation} {

/ *%
* Waits on the barrier until all peers do the same.
*/
void wait() {
std: :unique_lock<std: :mutex> lock{mutex};
auto lastgen = generation;
if (!(--count)) {
generation++;
count = threshold;
cond_var.notify_all();
} else {
cond_var.wait(lock,
[this, lastgen]() { return lastgen != generation; });

+

#endif //FF_BSP_BSP_BARRIER_HPP

bsp_communicator.hpp

#ifndef FF_BSP_BSP_COMMUNICATOR_HPP
#define FF_BSP_BSP_COMMUNICATOR_HPP

#include <set>
#include <iostream>
#include "bsp_array.hpp"

#ifdef STL_ALLOC
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#define m_shared_ptr(U, what) \

std::allocate_shared<U, std::llocator<U>> (std::allocator<U>(), (what))
#define alloc(U) std::allocator<U>
#else
#define m_shared_ptr(U, what) \

std::allocate_shared<U, ff::FF_Allocator<U>> (ff::FF_Allocator<U>(), (what))
#define alloc(U) ff::FF_Allocator<U>
#endif

/ k%
* Implementation of the communicator entity.
*/

// Requests management

/ k%

Inserts a request for replacing a node's private copy of a shared variable
with the provided value.

@tparam T the type of the variable

@param what ID of the variable to be modified

@param source ID of the node that performs the request

@param destination ID of the node that holds the private copy of the
variable that will be modified

@param element the value to be copied inside the destination

¥ X X X X X X *

*/
template<typename T>
void bsp_communicator::variable_put(int what, int source, int destination,
const T& element) {
if (what == 0) return;
mutexes[destination].lock();
requests[destination].emplace_back(request_type::var_put, what, source,
destination, 0, 0, O,
m_shared_ptr(T, element));
mutexes[destination].unlock();

/ k%
* Inserts a request for replacing a node's private copy of a shared variable
* with the requestor's private value of the same shared variable.
* @tparam T the type of the variable
* @param what ID of the variable to be modified
* @param source ID of the node that performs the request
* @param dest ID of the node that holds the private copy of the
* variable that will be modified
*/
template<typename T>
void bsp_communicator::variable_put(int what, int source, int dest) {
if (what == 0) return;
mutexes[dest].lock();
auto elem = (static_cast<T+>(variables_storage.at(what).element[source]));
requests[dest].emplace_back(request_type::var_put, what, source, dest, 0, 0,
0, m_shared_ptr(T, *elem));
mutexes[dest].unlock();

VETS
* Inserts a request for replacing an element of a node's private copy of a
* Shared array with the provided value.
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@tparam T the type of the elements of the array

@param what ID of the array to be modified

@param source ID of the node that performs the request
@param dest ID of the node that holds the private copy of the
array that will be modified

@param pos position of the element to be modified

@param elem the value to be copied inside the destination

ECEE R T S G

*/
template<typename T>
void bsp_communicator::array_put(int what, int source, int dest, int pos,
const T& elem) {
mutexes[dest].lock();

requests[dest].emplace_back(request_type::arr_put_el, what, source, dest, 0,

pos, 0, m_shared_ptr(T, elem));
mutexes[dest].unlock();

VETS

Inserts a request for replacing a portion of a node's private copy of a
shared array with a portion of the provided array.

@tparam T the type of the elements of the arrays

@param what ID of the array to be modified

@param src ID of the node that performs the request

@param src_off starting position of the portion of the replacing array
@param dest ID of the node that holds the private copy of the

array that will be modified

@param dest_off starting position of the portion to be replaced
@param len length of the portion of the replacing array

@param v the replacing array

¥ OK X X X X X X X X X

*/
template<typename T>
void bsp_communicator::array_put(int what, int src, int src_off, int dest,
int dest_off, int len,
const std::vector<T>& v) {
mutexes[dest].lock();
requests[dest].emplace_back(request_type::arr_put, what, src, dest,
src_off, dest_off, len,
m_shared_ptr(std::vector<T>, v));
mutexes[dest].unlock();

VAT

Inserts a request for replacing a portion of a node's private copy of a
shared array with a portion of the private copy of the requesting node
@tparam T the type of the elements of the arrays

@param what ID of the array to be modified

@param src ID of the node that performs the request

@param src_off starting position of the portion of the requesting node's
private copy of the array

@param dest ID of the node that holds the private copy of the

array that will be modified

@param dest_off starting position of the portion to be replaced

@param len length of the portion of the replacing array

¥ OK X X X X X X X X X

*/
template<typename T>
void bsp_communicator::array_get(int what, int from, int from_off, int to,
int to_off, int len) {
mutexes[to].lock();
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auto arr = static_cast<std::vector<T>*>(arrays_storage.at(
what) .element[from]);
requests[to].emplace_back(request_type::arr_get, what, from, to, from_off,
to_off, len, m_shared_ptr(std::vector<T>, *arr));
mutexes[to].unlock();

/ **

* Returns the value of a node's private copy of a shared variable,
without waiting for a superstep sync.
@tparam T the type of the variable
@param what ID of the variable to be queried
@param source ID of the node that holds the requested private copy
@return a copy of the desired value

*

*
*
*
*

*/
template<typename T>
T bsp_communicator::variable_direct_get(int what, int source) {
if (what == 0) return fastflow_input;
return =(static_cast<T+>(variables_storage.at(what).element.at(source)));

/ k%

Returns the value of an element of a node's private copy of a shared array,
without waiting for a superstep sync.

@tparam T the type of the elements of the array

@param what ID of the variable to be queried

@param src ID of the node that holds the requested private copy

@param pos position of the desired element

@return a copy of the desired value

ECE TR R S

*/
template<typename T>
T bsp_communicator::array_direct_get(int what, int src, int pos) {
auto arptr = static_cast<std::vector<T>*>(arrays_storage.at(
what) .element.at(src));
return arptr->at(pos);

*
* Returns a node's private copy of a shared array, without waiting for a
* superstep sync.
* @tparam T the type of the elements of the array
* @param what ID of the variable to be queried
* @param src ID of the node that holds the requested private copy
* @return a copy of the desired array
*/
template<typename T>
std::vector<T> bsp_communicator::array_direct_get(int what, int src) {
return x(static_cast<std::vector<T>#>(arrays_storage.at(what).element.at(
src)));

/*k%

Requests the handle to a shared variable of type \c T. Will create a new
shared variable if the requesting node already has the handle for all
already-present shared variables of type T. Sets the private copy of the
returned shared variable to an initial value.

@tparam T the type of the requested shared variable

@param holder ID of the node that requests the handle

ECE R U R
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* @param initial_val pointer to the value to be copied inside the requesting
* node's private copy
* @return a handle of the shared variable, wrapped in a \c bsp_variable.
*/
template<typename T>
bsp_variable<T> bsp_communicator::get_variable(int holder, T+ initial_val) {
auto tname = typeid(T).name();
// no. of variables of type T requested by the current worker
int get_count = 0;
try {
get_count = var_count[holder].at(std::string(tname));
} catch (const std::out_of_range&) {
var_count[holder].insert({std::string(tname), 0});
}
// hash on type, superstep and number of vars
int hash = get_hash(typeid(T).name(), (generation * 5000000) + get_count);
int ref;
// try to find a variable w/ the same hash
//(i.e. another worker has already requested the creation of the var)
try {
// multiple readers-single writer pattern
std: :shared_lock lock(var_mutex);
ref = variable_dict.at(hash);
} catch (const std::out_of_range&) {
std: :unique_lock lock(var_mutex);
// try again, in case another thread created the variable
// while this one waited
auto iter = variable_dict.find(hash);
// if the variable is still not present...
if (iter == variable dict.end()) {
// create the variable...
inner_var var{nprocs, [](void* el, voidx other) {
auto tptr = static_cast<T+>(el);
+tptr = x(static_cast<T*>(other));
}, [1(voidx el) {
auto tptr = static_cast<T+>(el);
delete tptr;
1
ref = variables_storage.size();
// ..and store it
variables_storage.push_back(var);
// together with its hash
variable_dict.insert({hash, ref});
} else {
// the variable is present
ref = iter->second;

}

// initialize with the value requested by the worker
variables_storage[ref].element.at(holder) = initial_val;
var_count[holder].at(std::string(tname))++;

return bsp_variable<T>{ref, holder, this, initial_val};

/*k%
* Requests the handle to a shared array with elements of type \c T. Will
x create a new shared array if the requesting node already has the handle for
* all already-present shared arrayss of type T. Sets the private copy of the
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returned shared array to an initial value.

@tparam T the type of the requested shared variable

@param holder ID of the node that requests the handle

@param initial_arr pointer to the value to be copied inside the requesting
node's private copy

@param to_delete flag that indicates whether the array can be deleted
safely when perfoming cleanup at the end of the computation

@return a handle of the shared array, wrapped in a \c bsp_array.

* X X X X X X %

*/
template<typename T>
bsp_array<T>
bsp_communicator::get_array(int holder, std::vector<T>x initial arr,
bool to_delete) {
auto tname = typeid(T).name();
int get_count = 0;
try {
get_count = arr_count[holder].at(std::string(tname));
} catch (const std::out_of_range&) {
arr_count[holder].insert({std::string(tname), 0});
}
int hash = get_hash(typeid(T).name(), (generation * 5000000) + get_count);
int ref;
try {
std::shared_lock lock(arr_mutex);
ref = array_dict.at(hash);
} catch (const std::out_of_range&) {
std::unique_lock lock(arr_mutex);
auto iter = array_dict.find(hash);
if (iter == array_dict.end()) {
inner_array arr{nprocs, [](void+ el, void+* other, int pos) {
auto arrptr = static_cast<std::vector<T>x>(el);
arrptr->at(pos) = *(static_cast<T*>(other));
}, [1(voidx el, int srcof, int dstof, int size, voidx toput) {
auto arrptr = static_cast<std::vector<T>x>(el);
auto otherptr = static_cast<std::vector<T, alloc(T)>*>(toput);
if (size == 0) {
arrptr->resize(otherptr->size());
for (size_t idx{0}; idx < otherptr->size(); ++idx) {
arrptr->at(idx) = otherptr->at(idx);
}
} else {
std::copy_n(otherptr->begin() + srcof, size,
arrptr->begin() + dstof);
}
}, to_delete ? []1(voidx el) {
auto tptr = static_cast<std::vector<T>*>(el);
delete tptr;
} ¢ [1(void*) {}};
ref = arrays_storage.size();
arrays_storage.push_back(arr);
array_dict.insert({hash, ref});
} else {
ref = iter->second;

}

arrays_storage[ref].element.at(holder) = initial_arr;
arr_count[holder].at(std::string(tname))++;

return bsp_array<T>{ref, holder, this, initial_arr};
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VETS
* During the superstep synchronization, processes all requests with a
* certain node as destination. The last node to finish this operation will also
* advance the superstep count.
* @param id ID of the node that will process the requests.
*/
void bsp_communicator::process_requests(int id) {
// Request filtering by worker id
for (const auto& req: requests[id]) {
switch (req.t) {
case request_type::var put: {
auto ptr = variables_storage.at(
req.reference) .element[reqg.destination];
variables_storage.at(req.reference).swap(ptr,
req.element.get());
break;
}
case request_type::arr put el: {
auto ptr = arrays_storage.at(
req.reference) .element[req.destination];
arrays_storage.at(req.reference).put(ptr, req.element.get(),
req.dest _offset);
break;
b
case request_type::arr put: {
auto ptr = arrays_storage.at(
req.reference).element[req.destination];
arrays_storage.at(req.reference).replace(ptr, req.src_offset,
req.dest_offset,
req.length,
req.element.get());
break;
}
case request_type::arr_get: {
auto ptr = arrays_storage.at(
req.reference) .element[req.destination];
arrays_storage.at(req.reference).replace(ptr, req.src_offset,
req.dest_offset,
req.length,
req.element.get());
break;

}
// The last worker to finish managing its requests will advance the
// computation by increasing the superstep count and resetting all the
// superstep-specific data structures used by the communicator
if (++process_count == nprocs) {
generation++;
delete[] arr_count;
arr_count = new std::map<std::string, int>[nprocs]();
delete[] var_count;
var_count = new std::map<std::string, int>[nprocs]();
delete[] requests;
requests = new std::vector<request,alloc(request)>[nprocs]();
process_count = 0;
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/ k%
* Makes the FastFlow input token available to all BSP nodes.
* @param in pointer to the input token
*/
void bsp_communicator::set_fastflow_input(const voidx in) {
fastflow_input = in;

VETS
* Returns the pointer to the FastFlow input token.
* @return a \c const pointer to the FastFlow input token.
*/
const void* bsp_communicator::get_fastflow_input() {
return fastflow_input;

VETS
* Deallocates all the data structures used in the communicator and all shared
* arrays and variables.
*/

void bsp_communicator::end() {

for (auto& var: variables_storage) {
auto del = var.free_el;
for (auto& el: var.element) {
del(el);

for (auto& arr: arrays_storage) {
auto del = arr.free_el;
for (auto& el: arr.element) {
del(el);

delete[] arr_count;
arr_count = nullptr;
delete[] var_count;
var_count = nullptr;
delete[] requests;
requests = nullptr;
delete[] mutexes;
mutexes = nullptr;

#endif //FF_BSP_BSP_COMMUNICATOR_HPP

bsp_internals.hpp

#1ifndef FF_BSP_INTERNALS_HPP
#define FF_BSP_INTERNALS_HPP

#include <utility>

104




10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

#include <vector>

#include <memory>

#include <shared_mutex>
#include <map>

#include <algorithm>
#include <atomic>

#include "stl_allocator.hpp"

#ifdef STL_ALLOC

#define alloc(T) std::allocator<T>
#else

#define alloc(T) ff::FF_Allocator<T>
#endif

VAT
* Contains definitions and class prototypes used by the communicator and
* variable/array classes
*/

/ *%
* Represents the type of a shared object (variable or array)
*/
typedef enum {
array,
variable
} vartype;

// Forward declaration
class bsp_communicator;

/ k%
* Base class for BSP variables and arrays, i.e. private copies of shared
* objects.
*/
class bsp_container {
protected:
//! ID of the shared object
int reference;
//! ID of the node that owns this private copy
int holder;
//! Pointer to the communicator object
bsp_communicator* comm;
//! Method that will return the object's type (variable or array)
virtual vartype var_type() = 0;
/*%
* Base constructor for the class.
* @param _reference ID of the shared object
* @param holder_pid ID of the node that owns this private copy
* @param _comm Pointer to the communicator object
*/
bsp_container(int _reference, int holder_pid, bsp_communicatorx _comm)
reference{_reference}, holder{holder_pid}, comm{_comm} {};
public:

virtual void bsp_get(int) = 0;
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+;

// Forward declaration
template<typename T>
class bsp_variable;

// Forward declaration
template<typename T>
class bsp_array;

// Class declaration for the communicator
class bsp_communicator {

private:
/ **
* Represent the possible types for a request object.
*/
enum request_type {
var_put,
arr_put_el,
arr_put,
arr_get
+
/*%
* Representation of a put/get request in the communicator.
*/

struct request {
request_type t;
int reference;
int source;
int destination;
int src_offset;
int dest_offset;
int length;
std: :shared_ptr<void> element;

request(request_type _t, int _ref, int _src, int _dest,
int _srcof, int _dstof, int _len, std::shared_ptr<void> _el)
t{_t}, reference{_ref}, source{_src}, destination{ _dest},
src_offset{_srcof}, dest offset{_dstof}, length{_len},
element{std: :move(_el)} {};
b

VAT
* Shared variable object in the shared memory.
*/
struct inner_var {
//! Vector of private copies of the variable
std::vector<void*, alloc(voidx)> element;
//! Bookkeeping function needed to work with <tt>voidx</tt>
//! Replaces a variable with another value
void (* swap)(void+ el,
void* other);
//! Bookkeeping function needed to work with <tt>voidx</tt>
//! Safely frees memory occupied by an element
void (x free_el) (
void* el);
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/ k%
* Constructor for the shared variable object.
* @param nprocs number of BSP nodes in the computation
* @param swapfun pointer to function for element swapping
* @param free_elfun pointer to function for safe delete
*/
inner_var(int nprocs, void (x swapfun) (voidx, voidx),
void (* free_elfun)(voidx)) : swap{swapfun},
free_el{free_elfun} {
element.resize(nprocs);

+

YELS
* Shared array object in the shared memory.
*/
struct inner_array {
//! Vector of private copies of the array
std::vector<void*, alloc(voidx)> element;
//! Bookkeeping function needed to work with <tt>voidx</tt>
//! Replaces an element of the a private copy of the array with another
//! value
void (* put)(void+ el, void+ toput,
int pos);
//! Bookkeeping function needed to work with <tt>voidx</tt>
//! Replaces a portion of a private copy of the array
void (* replace)(void* el, int srcof, int dstof, int 1len,
void* toput);
//! Bookkeeping function needed to work with <tt>voidx</tt>
//! Safely frees memory occupied by an element
void (x free_el)(
voidx el);

* Constructor for the shared variable object.

* @param nprocs number of BSP nodes in the computation

* @param putfun pointer to function for element swapping

* @param replacefun pointer to function for replacing a portion

* @param free_elfun pointer to function for safe delete

*/

inner_array(int nprocs, void (* putfun)(void*, voidx, int),
void (* replacefun)(void+, int, int, int, voidx),
void (* free_elfun) (voidx))

put{putfun}, replace{replacefun}, free_el{free_elfun} {
element.resize(nprocs);

};

/ *x
* Hashes a string and a number according to the dbj2 hash.
* @param s the string to be hashed
* @param seed an initial value for the hashing function
* @return a (hopefully) unique number that represents the input pair
*/
static int get_hash(const charx s, int seed) {
unsigned int hash = seed + 5381;
while (xs) {
hash = hash * 33 ~ (xs++);
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}

return hash;

//! Number of BSP nodes

int nprocs;

//! Number of current superstep
int generation = 1;

//! Counts the variables requested by each node in this superstep
std::map<std::string, int>* var_count;

//! Counts the arrays requested by each node in this superstep
std::map<std::string, int>* arr_count;

//! Mutex for multiple readers-single writer access to the variables
mutable std::shared_mutex var_mutex;

//! Mutex for multiple readers-single writer access to the arrays
mutable std::shared_mutex arr_mutex;

//! Dictionary for quick retrieving of variables based on their hash
std::map<int, int> variable_dict;

//! Dictionary for quick retrieving of arrays based on their hash
std: :map<int, int> array_dict;

//! Container that stores variables
std::vector<inner_var> variables_storage;
//! Container that stores arrays
std::vector<inner_array> arrays_storage;

//! Array of mutexes to access request queues

std: :mutex* mutexes;

//! Requests of variable/array modifications submitted during this superstep
std::vector<request, alloc(request)>* requests;

//! Counts the nodes that requested a sync during this superstep
std::atomic_int process_count{0};

//! Pointer to the input token received by the FastFlow node
const void+ fastflow_input = nullptr;

public:

/*%
* Constructor for the communicator.
* @param _nprocs number of BSP nodes in this computation.
*/
explicit bsp_communicator(int _nprocs) : nprocs{_nprocs} {
var_count = new std::map<std::string, int>[_nprocs]();
arr_count = new std::map<std::string, int>[_nprocs]();
mutexes = new std::mutex[_nprocs]();
requests = new std::vector<request, alloc(request)>[_nprocsl();
inner_var invar{nprocs, [](voidx, voidx) {}, [](voidx) {}};
variables_storage.push_back(invar);
b

// Refer to bsp_communicator.hpp

void set_fastflow_input(const voidx);
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const void* get_fastflow_input();

template<typename T>
void variable_put(int, int, int, const T&);

template<typename T>
void variable_put(int, int, int);

template<typename T>
T variable_direct_get(int, int);

template<typename T>
void array_put(int, int, int, int, const T&);

template<typename T>
void array_put(int, int, int, int, int, int, const std::vector<T>&);

template<typename T>
void array_get(int, int, int, int, int, int);

template<typename T>
T array_direct_get(int, int, int);

template<typename T>
std::vector<T> array_direct_get(int, int);

template<typename T>
bsp_variable<T> get_variable(int holder, Tx initial_val);

template<typename T>
bsp_array<T>
get_array(int holder, std::vector<T>x initial_arr, bool to_delete = true);
void process_requests(int id);
void end();
}

#endif //FF_BSP_BSP_VARIABLE_INTERNAL_HPP

bsp_node.hpp

#1ifndef FF_BSP_BSP_NODE_HPP
#define FF_BSP_BSP_NODE_HPP

#include <ff/ff.hpp>
#include "bsp_communicator.hpp"
#include "bsp_barrier.hpp"

/*k%x
* Specialization of a ff_node to work as the unit of computation in the BSP
* model.
*/

class bsp_node: public ff::ff_node {
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private:

//! Number of BSP nodes in this computation

int nprocs;

//! ID for this node

int id = -1;

//! Pointer to the communicator; implementation of the Communication Channel
bsp_communicator* comm;

//! Pointer to the barrier; implementation of the Synchronization Channel
bsp_barrier* barrier;

// bsp_program can access fields of this class
friend class bsp_program;

protected:

//! Pointer to the FastFlow input token
const voidx fastflow_input;

VA
* Forwards an output token to the next stage in the FastFlow graph.
* @param payload the token to forward
*/
void emit_output(void+ payload) {
ff_send_out(payload);

/*%
* Requests a new variable of type T from the communicator.
* @tparam T the type of the requested variable
* @param initial_value value to copy inside this node's private copy of
* the variable
* @return a handle to this node's private copy of the shared variable
*/
template <typename T>
bsp_variable<T> get_variable(const T& initial_value) {
T+ val = new T(initial_value);
return comm->get_variable<T>(id, val);

/* %
* Requests a new array with elements of type T from the communicator,
* initializing it with the copy a given vector.
* @tparam T the type of elements of the requested array
* @param initial_value value to copy inside this node's private copy of
* the array
* @return a handle to this node's private copy of the shared variable
*/
template <typename T>
bsp_array<T> get_array(const std::vector<T>& initial_value) {
auto val = new std::vector<T>(initial_value);
return comm->get_array(id, val);

/ *x
* Requests a new array with elements of type T from the communicator,
* initializing it with the pointer of a vector. Any modifications done
* to the initializing vector after the call to this method is inherently
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* BSP unsafe.

* @tparam T the type of elements of the requested array

* @param handle a pointer to the vector that will become this node's
* private copy of the shared array

* @return a handle to this node's private copy of the shared variable
*/

template <typename T>
bsp_array<T> get_array(std::vector<T>+ handle) {
return comm->get_array(id, handle, false);

}
/*%
* Requests a new array with elements of type T from the communicator,
* initializing it with an empty vector of given size.
* @tparam T the type of elements of the requested array
* @param size the size of the empty vector that will become this node's
* private copy of the shared array
* @return a handle to this node's private copy of the shared variable
*/

template <typename T>

bsp_array<T> get_empty_array(int size) {
auto val = new std::vector<T>(size);
return comm->get_array(id, val);

VA
* Returns the ID for this node.
* @return this node's ID.
*/
int bsp_pid() {
return id;

/*%
* Returns the number of nodes in the current BSP computation.
* @return the number of nodes in the current BSP computation.
*/
int bsp_nprocs() {
return nprocs;

VAT
* Terminates the current superstep and waits for the other nodes to sync.
*/
void bsp_sync() {
barrier->wait();
comm->process_requests(id);
barrier->wait();

VAT
* Function to be overwritten as the main parallel execution.
*/
virtual void parallel_function() = 0;
public:

[ **
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The FastFlow node service method.

Implementations of this class cannot redefine it.
@param in the input token (in this case, a special value \c ENDCOMP)
@return the same token as the input

EEE I

*/
void* svc (voidx in) final {
fastflow_input = comm->get_fastflow_input();
parallel_function();
return in;

+

#endif //FF_BSP_BSP_NODE_HPP

bsp_program. hpp

#1ifndef FF_BSP_BSP_PROGRAM_HPP
#define FF_BSP_BSP_PROGRAM_HPP

#include <ff/ff.hpp>
#include <memory>
#include <iostream>
#include "bsp_node.hpp"

/ k%
* Implements the Bulk Synchronous Parallel pattern as a FastFlow node.
*/

class bsp_program : public ff::ff_node {

private:

VA
* The emitter of the master-worker scheme; it allows the user to perform a
* (sequential) function before the execution of the main parallel part.
*/
struct emitter : ff::ff_node {
//! Value to end the computation after every node finishes its job
void* ENDCOMP = (voidx) ((unsigned long long) ff::FF_TAG_MIN - 1);

//! Optional function to be executed before the BSP computation
std: : function<void(void)> preprocessing;

//! Number of BSP nodes

int emitter_nprocs;

VAT

Constructor for the farm emitter.

@param pre optional function to be executed before the BSP

computation

* @param size number of BSP nodes

*/

emitter(std::function<void(void)> pre, int size)
preprocessing{std: :move(pre)},
emitter_nprocs{size} {

*

*

*

VETS
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* Service function of the farm emitter.

* @param in input FastFlow token

* @return the End-of-Stream token

*/

void+ svc(void+ in) override {
if (preprocessing != nullptr) preprocessing();
for (int i = 0; i < emitter_nprocs; i++) {
ff_send_out (ENDCOMP) ;

}
return EOS;

+

VA
* The collectot of the master-worker scheme; it allows the user to perform
* a (sequential) function after the execution of the main parallel part.
*/
struct collector : ff::ff_node {
//! Value to end the computation after every node finishes its job
void* ENDCOMP = (voidx) ((unsigned long long) ff::FF_TAG_MIN - 1);
//! Optional function to be executed after the BSP computation
std::function<void(void)> postprocessing;
//! Number of nodes in the BSP computation
int threshold;
//! Nodes that have finished their local computation
int count;
//! Pointer to the the outer class
bsp_program+ master;

VAT
* Constructor for the farm collector.
* @param post optional function to be executed after the BSP
computation
* @param size number of BSP nodes
*/
collector(std::function<void(void)> post, int size)
postprocessing{std: :move(post)},
threshold{size},
count{0} {

*

};

VAT
* Service function of the farm emitter.
* @param in input FastFlow token
* @return the input token, or GO_ON
*/
voidx svc(void+ in) override {
if (in == ENDCOMP) {
if (++count == threshold) {
if (postprocessing != nullptr) postprocessing();
}
return GO_ON;
} else {
master->forward(in);
}

return in;
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VAL
* Forwards the received token to the succeeding FastFlow node.
* @param token the token to be forwarded.
*/
void forward(void+ token) {
ff_send_out(token);

//! Number of BSP nodes (workers of the FastFlow farm pattern)
int nprocs;

//! Vector of pointers to BSP nodes
std::vector<std::unique_ptr<bsp_node>> processors;

//! The entity responsible for communication between nodes
bsp_communicator comm;

//! A barrier for synchronization between supersteps
bsp_barrier barr;

//! The farm emitter

emitter E;

//! The farm collector

collector C;

public:

/ *%

Constructor for the bsp_program object. Pushes necessary information
into the relevant entities (emitter, workers, collector)

@param _processors vector of BSP nodes for the computation

@param _pre optional function to be executed before the BSP computation
@param _post optional function to be executed after the BSP computation

* X X X *

*/
explicit bsp_program(std::vector<std::unique_ptr<bsp_node>>&& _processors,

std: :function<void(void)> _pre = nullptr,
std::function<void(void)> _post = nullptr)

nprocs{static_cast<int>(_processors.size())},

comm{nprocs},

barr{nprocs},

E{std::move(_pre), nprocs},

processors{std: :move(_processors)},

C{std: :move(_post), nprocs} {

for (size_t i{0}; i < nprocs; ++i) {

processors[i]->nprocs = nprocs;

processors[i]->id = i;

processors[i]->barrier = &barr;

processors[i]->comm = &comm;

C.master = this;

}

/*%
* Creates the FastFlow inner graph and executes the BSP computation.
* @param in optional, the input token received from the preceding FastFlow
* node
*/
void start(voidx in = nullptr) {
std::vector<std: :unique_ptr<ff::ff_node>> workers;
for (size_t i{0}; i < nprocs; ++i) {
auto d = static_cast<ff_nodex>(processors[i].release());
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workers.emplace_back(std: :unique_ptr<ff_node>(d));

comm.set_fastflow_input(in);
ff::ff_Farm<> farm(std::move(workers), E, C);

if (farm.run_and_wait_end() < 0)
std::cout << "error in running farm" << std::endl;

comm.end();

VA
* Service function for the BSP program node. Starts the BSP computation.
* @param in input token received from the preceding FastFlow node
*x @return GO_ON
*/
void* svc(void+ in) override {
start(in);
return GO_ON;

+

#endif //FF_BSP_BSP_PROGRAM_HPP

bsp_variable.hpp

#ifndef FF_BSP_BSP_VARIABLE_HPP
#define FF_BSP_BSP_VARIABLE_HPP

#include <type_traits>
#include "bsp_internals.hpp"

/ k%
* A variable data structure, private to a single worker but with support for
* communication with other similar entities.
*
* @tparam T type of the variable
*/
template<typename T>
class bsp_variable : public bsp_container {

// The template type must be copy-constructible and copy-assignable
static_assert(std::is_copy_constructible<T>::value &&
std::is_copy_assignable<T>::value,
"Type of bsp_variable must be copy-constructible "
"and copy-assignable");

private:
// bsp_array can access private fields of this class
template<typename E>

friend class bsp_array;

// bsp_communicator can access private fields of this class
friend class bsp_communicator;
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VAL
* Pointer to the actual data element.
*/

T+ element;

/ *%
* Default constructor.
*/

bsp_variable() = default;

/*%

Builds a bsp_variable object that holds a node's private copy of a shared
variable.

@param _ref ID of the shared variable

@param _hold ID of the requesting node

@param comm pointer to the communicator component

@param ptr pointer to the node's private copy

* X X X X %

*/
explicit bsp_variable(int _ref, int _hold, bsp_communicators comm, Tx ptr)
bsp_container(_ref, _hold, comm), element{ptr} {

/*%
* Returns the shared object type (in this case, a variable).
* @return the \c vartype value for variables
*/
vartype var_type() final {
return vartype::variable;

public:

/*%
* Returns a copy of the node's private element of the shared variable.
* @return a copy of the desired element
*/
T get() {
return xelement;

VAT
* Replaces another node's private element of the shared variable.
* @param elem element to be copied
* @param destination ID of the destination node
*/
void bsp_put(const T& elem, int destination) {
comm->variable_put<T>(reference, holder, destination, elem);

/ *%
* Replaces this node's private element with this node's private element of
* another shared variable.
* @param other the handle to the other shared variable
*/
void bsp_put(const bsp_variable<T>& other) {
const auto& t = *(other.element);
bsp_put(t, holder);

116




88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

110

111

112

113

114

115

116

117

118

119

120

121

122

124

125

126

127

128

129

130

131

132

133

135

136

137

138

139

140

141

+

* Replaces another node's private element with this node's private
* element of another shared variable.
* @param other the handle to the other shared variable
* @param destination ID of the destination node
*/
void bsp_put(const bsp_variable<T>& other, int destination) {
const auto& t = *(other.element);
bsp_put(t, destination);

VA
* Replaces another node's private element with this node's private
* element of this shared variable.
* @param destination ID of the destination node
*/
void bsp_put(int destination) {
comm->variable_put<T>(reference, holder, destination);

VES:
* Replaces this node's private element with another node's private
* element of this shared variable.
* @param source ID of the source node
*/
void bsp_get(int source) override {
comm->variable_put<T>(reference, source, holder);

}

VA
* Returns a copy of a node's private element of this shared variable.
* This method will return immediately, without waiting for a superstep
* sync.
* @param source ID of the source node
* @return a copy of the desired element
*/

T bsp_direct_get(int source) {
return comm->variable_direct_get<T>(reference, source);

/*%

Returns a handle to this node's private element of the shared variable.

*
* The returned object can be modified at will, without waiting for
* superstep syncs.

* This function is <b>BSP unsafe</b>.

*

@return a reference to the node's private element of the shared variable

*/
T& BSPunsafe_access() {
return xelement;

#endif //FF_BSP_BSP_VARIABLE_HPP
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stl_allocator.hpp

#ifndef FF_BSP_STL_ALLOCATOR_HPP
#define FF_BSP_STL_ALLOCATOR_HPP

#include <ff/allocator.hpp>
namespace ff {

/*%
* STL-compliant wrapper for FastFlow's custom allocator.
* @tparam T the type of objects to be allocated or deallocated.
*/
template<typename T>
class FF_Allocator {
public:
using value_type = T;
using propagate_on_container_move_assignment = std::true_type;
using is_always_equal = std::true_type;

/**
* Default constructor.
*/
FF_Allocator() noexcept = default;

/ k%
* Empty copy constructor.
* @tparam U the type of objects of the other allocator object
* @param other the other allocator object
*/
template<class U>
explicit FF_Allocator(const FF_Allocator<U>& other) noexcept {};

VETS
* Allocates n * sizeof(T) bytes of uninitialized storage by calling
* the FastFlow allocator instance's \c malloc function.
* @param n the number of objects to allocate storage for
* @return the pointer to the first newly-allocated object
*/
value_typex allocate(std::size_t n) {
return static_cast<value_type*>(FFAllocator::instance()
->malloc(n * sizeof(value_type)));

/ **

* Deallocates the storage referenced by the pointer p, which must be
* a pointer obtained by an earlier call to allocate().

* @param ptr pointer to the object to deallocate

*/

void deallocate(value_typex ptr, std::size_t) noexcept {

FFAllocator: :instance()->free(ptr);
}
b

VAT
* Checks that two allocator objects can be considered the same.
* @tparam T type of the first allocator
* @tparam U type of the second allocator
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* @return true

*/

template<class T, class U>
bool

operator==(const FF_Allocator<T>&, const FF_Allocator<U>&) { return true; }

/ *%
* Checks that two allocator objects can be considered different.
* @tparam T type of the first allocator
* @tparam U type of the second allocator
* @return false
*/
template<class T, class U>
bool

operator!=(const FF_Allocator<T>&, const FF_Allocator<U>&) { return false; }

#endif //FF_BSP_STL_ALLOCATOR_HPP

B.2 Parallel test programs

BSPinprod. cpp

#include <bsp_program.hpp>
struct BSPinprod : public bsp_node {
int problem_size;
explicit BSPinprod(int n) : problem_size{n} {};

inline int nloc(int p, int s, int n) const {
return (n + p - s - 1) / p;

}

double bspip(int p, int s, int n,
const std::vector<double>& x,
const std::vector<double>& y) {

auto Inprod = get_empty_array<double>(p);
double inprod = 0.0;

for (int i{0}; i < nloc(p, s, n); ++i) {
inprod += x.at(i) * y.at(i);

}

for (int t{0}; t < p; ++t) {
Inprod.bsp_put(inprod, t, s);

}

bsp_sync();

const auto& Inprod_arr = Inprod.BSPunsafe_access();
double alpha = 0.0;
for (int t{0}; t < p; ++t) {
alpha += Inprod_arr.at(t);
}

return alpha;
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}

void parallel_function() override {

int n = problem_size;
int p = bsp_nprocs();
int s = bsp_pid();

int nl = nloc(p, s, n);
std: :vector<double> x(nl);

for (int i{0}; i < nl; ++1i) {
x[i] =1 *p + s + 1;

bsp_sync();
std::cout << "taking time 1" << std::endl;
auto tl = std::chrono::high_resolution_clock::now();
double alpha = bspip(p, s, n, x, X);
auto t2 = std::chrono::high_resolution_clock: :now();
auto time = std::chrono::duration_cast<std::chrono::milliseconds>(
t2 - tl);
if (s == 0) {
std::cout << "Processor sum of squares up to
<< n << "x" << n << " is " << alpha << std::endl;
std::cout << "Processor " << s << ": local time taken is "
<< time.count()
<< std::endl;

<< § <<

int main(int argc, charx argv[]) {

if (argc == 1) {
std::cerr << "Usage: << argv[0] << " <P> (n)" << std::endl;
std::cerr << " where <P> is the number of processors used"
<< std::endl;
std::cerr << " and (n) is the size of input vector,
<< "optional (default is 500000000)" << std::endl;
return 1;

}
int p = std::stoi(argv[1]);
int n (argc >= 3) 7 std::stoi(argv[2]) : 500000000;
std::vector<std::unique_ptr<bsp_node>> nodes;
for (int i{0}; i < p; ++1i) {
nodes.emplace_back(std: :make_unique<BSPinprod>(n));

}
auto checksum = [n]() {

auto dn = static_cast<double>(n);

dn x=n + 1.0;

dn *x= 2.0 * n + 1.0;

dn /= 6.0;

std::cout << "Checksum: " << dn << std::endl;
b
bsp_program computation(std::move(nodes), nullptr, checksum);
computation.start();
return 0;
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BSPpsrs.cpp

#include <random>
#include <chrono>
#include <bsp_program.hpp>

struct BSPpsrs : public bsp_node {

int n;
int seed;

explicit BSPpsrs(int problem_size, int random_seed = -1)
n{problem_size},
seed{random_seed} {

b

void parallel_function() override {

bsp_array<int> to_sort = get_empty_array<int>(1);
int p = bsp_nprocs();

int s = bsp_pid();

auto t = std::chrono::high_resolution_clock::now();

if (s == 0) {
if (seed == -1) {
std::random_device x;
seed = x();
}

std::mt19937 mtw(seed);

std::vector<int> data(n);
std::iota(data.begin(), data.end(), 0);
std::shuffle(data.begin(), data.end(), mtw);

#ifdef DEBUG
std::ofstream printl{"generated_array.log"};
for (const auto& el: data) printl << el << std::endl;
printl.close();
#endif
auto t2 = std::chrono::duration_cast<std::chrono: :milliseconds>(
std::chrono::high_resolution_clock::now() - t).count();
std::cout << "Ended vector generation and shuffling (spent " << t2
" ms)" <<
"\nstarting parallel part" << std::endl;

<<

t = std::chrono::high_resolution_clock: :now();
int numels = n / p;
int count = 0;
for (int i{0}; i < n; i += numels) {
auto last = std::min(n, i + numels);
to_sort.bsp_put(
std: :vector<int>(data.begin() + i, data.begin() + last),
count++);

bsp_sync();

bsp_array<std: :vector<int>> ps_array = get_empty_array<std::vector<int>>(
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p); // array of vectors!
auto& vec = to_sort.BSPunsafe_access();

std::sort(vec.begin(), vec.end());

#ifdef DEBUG

#endif

std::ofstream printla{"distributed_array-" + std::to_string(s) + ".log"};
for (const auto& el: vec) printla << el << std::endl;
printla.close();

std::vector<int> primary_samples;

size_t samplesize = vec.size() / p;
size_t i;

for (i = 0; i < vec.size(); i += samplesize) {
primary_samples.emplace_back(vec.at(i));

}

if (i !'= vec.size() - 1) primary_samples.emplace_back(vec.at(i - 1));

#ifdef DEBUG

#endif

std::ofstream print2{"primary_samples-" + std::to_string(s) + ".log"};
for (const auto& el: primary_samples) print2 << el << std::endl;
print2.close();

for (i = 0; i < p; ++i) {
ps_array.bsp_put(primary_samples, i, s);

}
bsp_sync();

bsp_array<std::vector<int>> portion = get_empty_array<std::vector<int>>(
p);

std::vector<int> ps_all;

std: :vector<int> secondary_samples;

const auto& psref = ps_array.BSPunsafe_access();

for (const auto& vecs: psref) {
ps_all.insert(ps_all.end(), vecs.begin(), vecs.end());

std::sort(ps_all.begin(), ps_all.end());
samplesize = ps_all.size() / p;
for (i = 0; 1 < ps_all.size(); i += samplesize) {

secondary_samples.emplace_back(ps_all.at(i));

}

if (i == ps_all.size())
secondary_samples.emplace_back(ps_all.at(i - 1));

#ifdef DEBUG
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#endif

std::ofstream print3{"secondary_samples-" + std::to_string(s) + ".log"};

for (const auto& el: secondary_samples) print3 << el << std::endl;
print3.close();

int upperbound;
int count = 1;

do {
upperbound = secondary_samples.at(count++);
} while (vec.at(0) > upperbound);

count--;
std: :vector<int> temp;
for (i = 0; i < vec.size(); ++1i) {
if (vec.at(i) > upperbound) {
portion.bsp_put(temp, count - 1, s);
temp.clear();
upperbound = secondary_samples.at(++count);
b

temp.emplace_back(vec.at(i));

portion.bsp_put(temp, count - 1, s);
bsp_sync();

bsp_array<std::vector<int>> final_arr =
get_empty_array<std::vector<int>>(p);

std::vector<int> secondary_block;
auto& pbls_ref = portion.BSPunsafe_access();

size_t totalsz = 0;
for (const auto& pbl: pbls_ref) totalsz += pbl.size();

secondary_block.reserve(totalsz);
for (auto& pbl: pbls_ref) {
secondary_block.insert(
secondary_block.end(),
std: :make_move_iterator(pbl.begin()),
std: :make_move_iterator(pbl.end()));

std::sort(secondary_block.begin(), secondary_block.end());

#ifdef DEBUG

#endif

std::ofstream print4{"secondary_block-" + std::to_string(s) + ".log"};

for (const auto& el: secondary_block) print4 << el << std::endl;
print4.close();

final_arr.bsp_put(secondary_block, 0, s);
bsp_sync();

if (s == 0) {
auto& sbls_ref = final_arr.BSPunsafe_access();
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std::vector<int> final;
for (auto& sbl: sbls_ref) {
final.insert(final.end(), std::make_move_iterator(sbl.begin()),
std: :make_move_iterator(sbl.end()));

#ifdef DEBUG
std::ofstream print5{"final.log"};
for (const auto& el: final) print5 << el << std::endl;
print5.close();

#endif
bool passed = true;
for (int j{0}; j < n; j++) {
if (finall[j]l '= j) {
passed = false;
break;
}
}
std::cout << "Check " << (passed ? "passed" : "failed")
<< std::endl;
auto tl = std::chrono::high_resolution_clock: :now();
std::cout << "Parallel part took "
<< std::chrono::duration_cast<std::chrono::milliseconds>(
tl - t).count() << " ms." << std::endl;
}
bsp_sync(); // Needed to keep all threads alive!
}
+

int main(int argc, charx argv[]) {
if (argc < 3) {
std::cerr << "Usage: " << argv[0] << " <N> <P> (seed)" << std::endl;
std::cerr << " where N is the problem size (power of 2)" << std::endl;
std::cerr << " P is the number of threads used (power of 2)"
<< std::endl;

std::cerr << " N must be >= P"3" << std::endl;
std::cerr
<< " seed is an optional seed for permutations "

<< "(leave blank to randomize it)"
<< std::endl;
return -1;

int n, p, s;

n = std::stoi(argv[1l]);

p = std::stoi(argv[2]);

if (n<p=*p=*p){
std::cerr << "N must be >= P"3" << std::endl;
return -1;

}

s = (argc >= 4 ? std::stoi(argv[3]) : -1);

std::vector<std::unique_ptr<bsp_node>> nodes;

for (size_t i{0}; i < p; ++i) {
nodes.push_back(std: :make_unique<BSPpsrs>(n, s));

}
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bsp_program mbsp(std::move(nodes));
mbsp.start();
return 0;

BSPfft.cpp

#include <cmath>
#include <fstream>
#include <bsp_program.hpp>

struct BSPfft : public bsp_node {

std::vector<double> global_x;
int global_n;

explicit BSPfft(int _n, std::vector<double> glob) : global_n{_n}, global_x{
std::move(glob)} {
}

constexpr static double PI = 3.141592653589793;

static void ufft(std::vector<double>& x, int offset, int n, bool sign,
const std::vector<double>& w) {

for (int k = 2; k <= n; k *= 2) {
int nk = n / k;
for (int r = 0; r < nk; ++r) {
int rk = 2 * r * k;
for (int j = 0; j < k; j +=2) {
double wr = w[j * nk];
double wi;
if (sign) {
wi = w[j * nk + 1];
} else {
wi = -w[j * nk + 1]
}
int jO = rk + j + offset;
int j1 = jo + 1;
int j2 = jOo + k;
int j3 = j2 + 1;
double taur = wr * x[j2] - wi * x[j3];
double taui = wi * x[j2] + wr * x[j3];
x[j2] = x[j0O] - taur;
x[j3]1 = x[j1] - taui;
x[jO] += taur;
x[j1] += taui;
}
}
}

static void ufft_init(int n, std::vector<double>& w) {
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assert(w.size() == n);

if (n == 1) return;
w[0] = 1.0;
w[l] = 0.0;

if (n == 4) {
w[2] = 0.0;
w[3] = -1.0;

} else if (n >= 8) {
double theta = -2.0 * PI / static_cast<double>(n);
for (int j = 1; j <= n / 8; j++) {

w[2 * j] = std::cos(j * theta);
w[2 * j + 1] = std::sin(j * theta);

for (int j = 0; j <n / 8; j++) {
int ndj =n / 4 - j;
wl2 = nd4j] = -w[2 * j + 1];
w[2 * nd4j + 1] = -w[2 * j];

for (int j = 1; j < n / 4; j++) {
int n2j =n/ 2 - j;
w2 * n2j] = -w[2 * jI1;
w[2 * n2j + 1] = w[2 * j + 1];

}

static void twiddle(std::vector<double>& x, int length, bool sign,
const std::vector<double>& w, int offset) {
for (int jo = 0; jo < 2 * length; jo += 2) {
int j = jo;
int j1 = j + 1;
double wr = w[offset + jI;
double wi;

if (sign) {
wi w[offset + jl1;
} else
wi

[ |

-w[offset + jl];

double xr = x[j];
double xi = x[j1];
X[j] = wr = xr - wi * xi;
x[j1] = wi * Xr + wr * xi;

}

static void twiddle_init(int n, double alpha, const std::vector<int>& rho,
std::vector<double>& w, int offset) {
double theta = -2.0 = PI * alpha / static_cast<double>(n);
for (int j = 0; j < n; ++j) {
double rt = static_cast<double>(rho[j]) * theta;
w[offset + 2 * j] = std::cos(rt);
w[offset + 2 * j + 1] = std::sin(rt);
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}

static void
permute(std::vector<double>& x, int n, const std::vector<int>&
int line) {
assert(x.size() / 2 == sigma.size());

for (int j = 0; j < n; ++j) {
if (j < sigmalj]) {

int jO = 2 * j;
int j1 = jo + 1;
int j2 = 2 * sigmaljl;
int j3 = j2 + 1;
double tmpr = x[j0O];
double tmpi = x[jl];
x[j0] = x[j21;
x[j1] = x[3j3];
x[j2] tmpr;
x[j3] = tmpi;

}

static void bitrev_init(std::vector<int>& rho) {
int n = rho.size();

auto binary_len = static_cast<int>(std::ceil(
std: :log(static_cast<double>(n)) / std::l0g(2.0)));
std::vector<bool> bits(binary_len);
std: :vector<int> pwrs(binary_len);
pwrs[0] = 1;
for (int j = 1; j < binary_len; ++j) {
pwrs[j]l = pwrs[j - 1] * 2;
}
int j = 0;
while (j < n - 1) {
J++;
int lastbit = 0;
while (bits[lastbit]) {
bits[lastbit] = false;
lastbit++;
}
bits[lastbit] = true;
int val = 0;
for (int k = 0; k < binary_len; ++k) {
if (bits[k]) {
val += pwrs[binary_len - k - 1];

}
rho[j] = val;

}

static int k1_init(int n, int p) {
assert(p < n);

int np = n / p;
int c;
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for (c = 1; c < p; € *= np);
return n / c;

static void bspfft_init(int n, int p, int s, std::vector<double>& w0,
std: :vector<double>& w,
std::vector<double>& tw, std::vector<int>& rho_np,
std: :vector<int>& rho_p) {
int np = n / p;
bitrev_init(rho_np);

if (p>1) {
bitrev_init(rho_p);

}

int k1 = kl_init(n, p);

ufft_init(kl, w0);

ufft_init(np, w);

int ntw = 0;

for (int ¢ = k1; c <= p; c *= np) {
double alpha = static_cast<double>(s % c) / static_cast<double>(c);
twiddle_init(np, alpha, rho_np, tw, 2 * ntw * np);
ntw++;

static void calcError(const std::vector<double>& xlocal,
const std::vector<double>& xarr, int n, int p,
int s) {
double error = 0.0;
int c = 0;
for (; c <=n / p; c++) {
double lerror = std::abs(xlocall[c] - xarr[cl);
error += lerror;
}
std::cout << s << ": local error is "
<< (error / static_cast<double>(n)) << std::endl;

void bspredistr(bsp_array<double>& x, int n, int p, int s, int c@, int cl1,
bool rev, const std::vector<int>& rho_p) {
assert(l <= c0);
assert(co <= cl);
assert(cl <= p);

auto xarr = x.BSPunsafe_access();
int np = (int) xarr.size() / 2;

int ratio = cl / c0;

int size = std::max(np / ratio, 1);
int npackets = np / size;
std::vector<double> tmp(2 * size);

assert (p <= n);
int jo, j2;
if (rev) {

jO = rho_p[s] % c0O;
j2 = rho_p[s] / c0;
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} else {
jo =s
j2

o°

co;
co;

I
wn
~

}

for (int j = 0; j < npackets; j++) {
int jglob = j2 * cO@ * np + j * cO + jO;
int destproc = (jglob / (cl = np)) * cl + jglob % cl;
int destindex = (jglob % (cl * np)) / cl;
for (int r = 0; r < size; ++r) {
int tr = 2 * r;
int tjrr = 2 * (j + r * ratio);
tmp[tr] = xarr[tjrr];
tmp[tr + 1] = xarr[tjrr + 1];
}
assert(destproc <= p);
assert(destindex < xarr.size() / 2);
X.bsp_put(tmp, destproc, 0, 2 * destindex, 2 * size);
}
bsp_sync();

void bspfft(bsp_array<double>& x, int n, int p, int s, bool sign,

const std::vector<double>& w@, const std::vector<double>& w,
const std::vector<double>& tw,
const std::vector<int>& rho_np, const std::vector<int>& rho_p) {

int np = n / p;

int k1 = kl_init(n, p);

permute(x.BSPunsafe_access(), np, rho_np, __LINE__);

bool rev = true;

for (int r = 0; r < np / k1; r++) {
ufft(x.BSPunsafe_access(), 2 * r = k1, k1, sign, w0);

int c0 = 1;
int ntw = 0;

for (int c = k1; c <= p; ¢ *= np) {
bspredistr(x, n, p, s, ¢c0, c, rev, rho_p);
rev = false;
twiddle(x.BSPunsafe_access(), np, sign, tw, 2 * ntw * np);
ufft(x.BSPunsafe_access(), 0, np, sign, w);

co = c;
ntw++;
}
if (!sign) {
auto& xarr = x.BSPunsafe_access();
double ninv = 1.0 / static_cast<double>(n);
for (int j = 0; j < 2 * np; ++j) {
xarr[j] *= ninv;
}
}

std: :vector<double>& fft(const std::vector<double>& xlocal) {
int s = bsp_pid();
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int n = global_n / 2;

int p = bsp_nprocs();

int k1 = k1_init(n, p);
std::vector<double> wO(kl);

std: :vector<double> w(n / p);
std::vector<double> tw(2 * n / p);
std: :vector<int> rho_np(n / p);
std::vector<int> rho_p(p);

bsp_array<double> x = get_array(xlocal);
auto time = std::chrono::high_resolution_clock: :now();

if (p==1){
bspfft_init(n, p, s, w0, w, tw, rho_np, rho_p);

permute(x.BSPunsafe_access(), n, rho_np, __LINE__);
ufft(x.BSPunsafe_access(), 0, n, true, w);
permute(x.BSPunsafe_access(), n, rho_np, __LINE _);
ufft(x.BSPunsafe_access(), 0, n, false, w);

auto& xi = x.BSPunsafe_access();
double ninv = 1.0 / static_cast<double>(n);
for (int j = 0; j < 2 * n; ++j) {
xi[j] *= ninv;
}
calcError(x.BSPunsafe_access(), global_x, n, p, s);
auto t = std::chrono::high_resolution_clock: :now();
auto tc = std::chrono::duration_cast<std::chrono::milliseconds>(
t - time).count();
std::cout << "Parallel part took " << tc <<
return x.BSPunsafe_access();

ms." << std::endl;

bsp_sync();

bspfft_init(n, p, s, w0, w, tw, rho_np, rho_p);

std::cout << s << ": calling bspfft with n=" << n << ", p=" << p
<< ", s=" << s << std::endl;

bspfft(x, n, p, s, true, wo, w, tw, rho_np, rho_p);

bsp_sync();

std::cout << s << ": calling bspfft (inv) with n=
<< ", s=" << s << std::endl;
bspfft(x, n, p, s, false, wo, w, tw, rho_np, rho_p);

<< n <<

» P=7 =< p

if (s == 0) {
auto t = std::chrono::high_resolution_clock: :now();
auto tc = std::chrono::duration_cast<std::chrono::milliseconds>(
t - time).count();
std::cout << "Parallel part took " << tc << " ms." << std::endl;

calcError(x.BSPunsafe_access(), xlocal, n, p, s);
return x.BSPunsafe_access();

void parallel_function() override {

bsp_array<double> local_x = get_empty_array<double>(1);

130




340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

if (bsp_pid() == 0) {

auto p = bsp_nprocs();

for (int s = 0; s < p; ++s) {
std::vector<double> xlocal(global_n / p);
int ¢ = 0;
int nl = global_n / 2;
for (int 1 = 0; i < 2 * nl; ++1i) {

if ((1 / 2) % p ==5) {
xlocal[c++] = global_x[i];

}
}
local x.bsp_put(xlocal, s);
}
}
bsp_sync();

fft(local_x.BSPunsafe_access());

+

int main(int argc, charx argv[]) {
if (argc < 3) {
std::cerr << "Usage: " << argv[0] << " <N> <P>" << std::endl;
std::cerr << " where N is the problem size (power of 2)" << std::endl;
std::cerr << " P is the number of threads used (power of 2)"
<< std::endl;
return -1;

int n, p;
n = std::stoi(argv[l]);
p = std::stoi(argv[2]);
std: :vector<double> global _x(n);
for (int i = 0; 1 < n; 1 += 2) {
global_x[i] = static_cast<double>(i) / 2.0;

std::vector<std::unique_ptr<bsp_node>> nodes;
for (size_t i{0}; i < p; ++i) {
nodes.push_back(std: :make_unique<BSPfft>(n, global_x));

bsp_program mbsp(std: :move(nodes));
mbsp.start();

BSPlu.cpp

#include <bsp_program.hpp>
#include <cmath>
#include <limits>
#include <random>

class BSPlu : public bsp_node {

private:
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int param_n, param_M, param_N;
std::mt19937 rand;
std::uniform_real_distribution<double> dist{-32.768, 32.768};

template<typename T>
using matrix = std::vector<std::vector<T>>;

using clock = std::chrono::high_resolution_clock;
using milliseconds = std::chrono::milliseconds;

inline int nloc(int p, int s, int n) const {
return (n + p - s - 1) / p;
}

void bsplu(int M, int N, int n, int s, int t,
std::vector<int>& raw_pi, matrix<double>& a) {

int p = bsp_pid();
int P = bsp_nprocs();
int p.i=p/N;

int p_.j = p % N;

assert(p_i == s);
assert(p_j == t);

auto pi = get_array<int>(&raw_pi);

std::vector<bsp_array<double>> A;

for (int i{0}; i < a.size(); ++i) {
A.emplace_back(get_array<double>(&a.at(i)));

}

std::vector<double> raw_pivots(M);

auto pivots = get_array<double>(&raw_pivots);

std: :vector<int> raw_pivot_info(3);

auto pivot_info = get_array<int>(&raw_pivot_info);

std::vector<double> raw_pivot_row(n / N);

auto pivot_row = get_array<double>(&raw_pivot_row);

std::vector<double> raw_pivot_col(n / M);

auto pivot_col = get_array<double>(&raw_pivot_col);

bsp_sync();

for (int i{0}; i < nloc(P, p, n); ++i) {
raw_pi.at(i) = p + i * P;

}

for (int k{0}; k < n - 1; ++k) {

int kdN = k / N;

raw_pivot_info.at(0) = nloc(M, p_i, k);

int kdM = raw_pivot_info.at(0);

double temp_m;

double absmax = 0.0;

if (pj == k% N) {

for (int i{raw_pivot_info.at(0)}; i < a.size(); ++i) {
if (std::abs(a.at(i).at(kdN)) > absmax) {

raw_pivot_info.at(0) = i;
absmax = std::abs(a.at(i).at(kdN));
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}
temp_m = (raw_pivot_info.at(0) == a.size()) ?
-std: :numeric_limits<double>::infinity()
a.at(raw_pivot_info.at(0)).at(kdN);
for (int i{0}; i < M; ++i) {
pivots.bsp_put(temp_m, i * N + p_j, p_1i);

bsp_sync();

raw_pivot_info.at(1) i;
raw_pivot_info.at(2) = k % N;
if (p_j == raw_pivot_info.at(2)) {
temp_m = raw_pivots.at(0);
raw_pivot_info.at(l) = 0;
for (int i{1}; i < M; ++i) {
double temp = raw_pivots.at(i);
if (temp > temp_m) {
temp_m = temp;
raw_pivot_info.at(1l) = i;

p—
k

}
auto el = pivot_info.bsp_direct_get(
raw_pivot_info.at(l) * N + raw_pivot_info.at(2), 0);
pivot_info.BSPunsafe_access().at(0) = el;
for (int i{kdM}; i < a.size(); ++i) {
a.at(i).at(kdN) /= temp_m;
}
if (p_i == raw_pivot_info.at(1)) {
a.at(raw_pivot_info.at(0)).at(kdN) = temp_m;

for (int j{0}; j < N; j++) {
pivots.bsp_put(raw_pivots, p_i * N + j,
raw_pivot_info.at(1l), raw_pivot_info.at(1l),
1);
pivot_info.bsp_put(raw_pivot_info, p_i * N + j);

bsp_sync();
temp_m = raw_pivots.at(raw_pivot_info.at(1));
assert(temp_m != 0.0);

int temp_m_rho =

(M * raw_pivot_info.at(0) + raw_pivot_info.at(l)) % P;
int temp_l_cyc =

(M * raw_pivot_info.at(0) + raw_pivot_info.at(l)) / P;

if (p == temp_m_rho) {
pi.bsp_get(k % P, k / P, temp_l_cyc, 1);
}
if (p == k % P) {
pi.bsp_get(temp_m_rho, temp_l_cyc, k / P, 1);
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}
if (p_i == raw_pivot_info.at(1l)) {
auto arr = A.at(k / M).bsp_direct_get((k % M) * N + p_j);
if (arr.size() == 2)
std::cout << "size 2" << std::endl;
A.at(raw_pivot_info.at(0))
.bsp_put(arr);

b
if (p_i ==k % M) {
auto arr = A.at(raw_pivot_info.at(0)).bsp_direct_get(
raw_pivot_info.at(l) * N + p_j);
if (arr.size() == 2)
std::cout << "size 2" << std::endl;
A.at(k / M)
.bsp_put(arr);
}

if (p_i == raw_pivot_info.at(1l)) {
for (int j{0}; j < a.at(0).size(); ++j) {
raw_pivot_row.at(j) = a.at(raw_pivot_info.at(0)).at(j);

}
for (int i{0}; i < M; ++i) {
if (i == p_i) continue;
pivot_row.bsp_put(raw_pivot_row, i * N + p_j);
}

if (p_j == raw_pivot_info.at(2)) {
for (int i{0}; i < a.size(); ++i) {
raw_pivot_col.at(i) = a.at(i).at(k / N);

}
for (int j{0}; j < N; ++j) {
if (j == p_j) continue;
pivot_col.bsp_put(raw_pivot_col, p_i * N + j);
}

bsp_sync();

if (p_i == raw_pivot_info.at(1l)) {
auto el = A.at(raw_pivot_info.at(0)).bsp_direct_get(
p_i* N+ k % N);
std::copy_n(el.begin() + k / N, 1,
raw_pivot_col.begin() + raw_pivot_info.at(0));
//pivot_col.bsp_put(el, k/N, raw_pivot_info.at(0), 1);

bsp_sync();

int istart = k / M;
int jstart = k / N
// a.at(istart) = A.at(istart).BSPunsafe_access();
if (p_i <= k % M) istart++;
if (p_j <= k % N) jstart++;
auto& raw_pivot_row2 = pivot_row.BSPunsafe_access();
auto& raw_pivot_col2 = pivot_col.BSPunsafe_access();
for (int i{istart}; i < a.size(); i++) {

//a.at(i) = A.at(1i).BSPunsafe_access();
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for (int j{jstart}; j < a.at(i).size(); ++j) {
a.at(i).at(j) -=
raw_pivot_row2.at(j) * raw_pivot_col2.at(i);

}
bsp_sync();

public:

BSPlu(int n, int M, int N, unsigned int seed) : param_n{n}, param_M{M},
param_N{N}, rand{seed} {

};

void parallel_function() override {
auto time = clock::now();

int n = param_n;

int M = param_M;

int N = param_N;

int s = bsp_pid() / N;
int t = bsp_pid() % N;
int nlr = nloc(M, s, n);
int nlc = nloc(N, t, n);

matrix<double> a(nlr);
for (int i{0}; i < nlr; ++1i) {
a.at(i).resize(nlc);
for (int j{0}; j < nlc; ++j) {
a.at(i).at(j) = dist(rand);

std: :vector<int> pi(nloc(bsp_nprocs(), bsp_pid(), n));
auto timec = std::chrono::duration_cast<milliseconds>(
clock::now() - time).count();
std::cout << "Processor " << bsp_pid() << ": init took " << timec
<< " ms." << std::endl;

time = clock::now();
bsplu(M, N, n, s, t, pi, a);
timec = std::chrono::duration_cast<milliseconds>(
clock::now() - time).count();
if (bsp_pid() == 0)
std::cout << "Processor " << bsp_pid() << ": LU took " << timec
<< " ms." << std::endl;

};

int main(int argc, charx argv[]) {
if (argc < 4) {
std::cerr << "Usage:

<< argv[0] << " <n> <M> <N>" << std::endl;

std::cerr << " will start LU decomposition on a n by n matrix"
<< std::endl;

std::cerr << " using M times N threads." << std::endl;

return 1;
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int n = std::stoi(argv[1]);
int M = std::stoi(argv([2]);
int N = std::stoi(argv[3]);

std::random_device rd;
std::vector<std::unique_ptr<bsp_node>> nodes;
for (int i{0}; 1 < M * N; ++i) {
nodes.emplace_back(std: :make_unique<BSPlu>(n, M, N, rd()));

}
auto t0 = std::chrono::high_resolution_clock: :now();
auto 0 = [&tO]() {

t0 = std::chrono::high_resolution_clock: :now();
+i

auto f1 = [&tO]() {
auto tl = std::chrono::high_resolution_clock::now();
auto diff = std::chrono::duration_cast<std::chrono::milliseconds>(
tl - to);
std::cout << "Main part took " << diff.count() <<

ms." << std::endl;

};

bsp_program computation(std::move(nodes), f0, fl);
computation.start();
return 0;

B.3 Sequential test programs

sequential_inprod. cpp

#include <string>
#include <chrono>
#include <iostream>

int main(int argc, charx argv([]) {
if (argc < 2) return 1;
int n = std::stoi(argv[l]);
auto x = new double[n]();

for (int i{0}; 1 < n; ++1i) {
x[i] =1 + 1;

double inprod = 0.0;
auto tl = std::chrono::high_resolution_clock: :now();
for (int i{0}; 1 < n; ++1i) {
inprod += x[i] * x[i];
}
auto t2 = std::chrono::high_resolution_clock::now() - t1;
std::cout << "Processor 0: sum of squares up to "
<< inprod << std::endl;
std::cout << "Processor 0: local time taken is "

<< n << * << n <<

is

<< std::chrono::duration_cast<std::chrono::milliseconds>(
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t2).count() << std::endl;

auto dn = static_cast<double>(n);

dn *x=n + 1.0;

dn *= 2.0 x n + 1.0;

dn /= 6.0;

std::cout << "Checksum: " << dn << std::endl;

delete[] x;

return 0;

sequential_sorting. cpp

#include <random>
#include <vector>
#include <iostream>
#include <algorithm>
#include <numeric>
#include <chrono>

int main(int argc, charx argv[]) {
if (argc < 2) {
std::cerr << "Usage: " << argv[0] << " <N> (seed)" << std::endl;
std::cerr << " where N is the problem size (power of 2)" << std::endl;
std::cerr
<< " seed is an optional seed for permutations "
<< "(leave blank to randomize it)"
<< std::endl;
return -1;

int n, s;

n = std::stoi(argv[1l]);

s = (argc >= 3 ? std::stoi(argv([2]) : -1);

auto t = std::chrono::high_resolution_clock: :now();

if (s == -1) {
std::random_device Xx;
s =x();

}

std: :mt19937 mtw(s);

std::vector<int> data(n);
std::iota(data.begin(), data.end(), 0);
std::shuffle(data.begin(), data.end(), mtw);

int*x dat2 = new int[n]();

for (int i = 0; i < n; ++1i) dat2[i] = data.at(i);

auto tl = std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::high_resolution_clock::now() - t).count();

std::cout << "Ended vector generation and shuffling (spent " << tl << " ms)"

<< "\nstarting sequential part" << std::endl;

auto t2 = std::chrono::high_resolution_clock: :now();

std::sort(data.begin(), data.end());
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auto t3p = std::chrono::high_resolution_clock: :now();
std::sort(dat2, dat2 + n);
auto t4 = std::chrono::high_resolution_clock: :now();

bool passed = true;
for (int j{0}; j < n; j++) {

if (data[j] != j) passed = false;
}

auto t3 = std::chrono::duration_cast<std::chrono::milliseconds>(
t3p - t2).count();

auto td4c = std::chrono::duration_cast<std::chrono::milliseconds>(
t4 - t3p).count();

std::cout << "Check " << (passed ? "passed" : "failed") << std::endl;
std::cout << "Parallel part took " << t3 << " ms." << std::endl;

std::cout << "Plain array part took " << t4c << " ms." << std::endl;

delete[] dat2;

sequential_fft.cpp

#include <complex>
#include <iostream>
#include <vector>
#include <chrono>
#include <cassert>

constexpr static double PI = 3.141592653589793;

void ufft(std::vector<double>& x, int offset, int n, bool sign,
const std::vector<double>& w) {

for (int k = 2; k <= n; k = 2) {
int nk = n / k;
=0; r <nk; ++r) {
2

for (int r
int rk = * r * k;
for (int j = 0; j < k; j +=2) {
double wr = w[j * nk];
double wi;
if (sign) {
wi = w[j * nk + 1];
} else {
wi = -w[j * nk + 1];
}
int jo = rk + j + offset;
int j1 = jO + 1;
int j2 = jOo + k;
int j3 = j2 + 1;

double taur = wr * x[j2] - wi * x[j3];
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double taui = wi * x[j2] + wr * X[j3];

x[j2] = x[jO] - taur;
x[j3] = x[j1] - taui;
x[jO] += taur;
x[j1] += taui;

}
}
}
}
void ufft_init(int n, std::vector<double>& w) {
assert(w.size() == n);
if (n == 1) return;
w[0] = 1.0;
w[l] = 0.0;

if (n == 4) {
w[2] = 0.0;
w[3] = -1.0;

} else if (n >= 8) {
double theta = -2.0 % PI / static_cast<double>(n);
for (int j = 1; j <= n / 8; j++) {

w[2 * j] = std::cos(j * theta);
w[2 * j + 1] = std::sin(j * theta);

for (int j = 0; j <n / 8; j++) {
int n4dj =n / 4 - j;
wl2 * nd4j] = -w[2 = j + 1];
w[2 * nd4j + 1] = -w[2 * jI;

for (int j = 1; j <n / 4; j++) {
int n2j =n/ 2 - j;
w[2 * n2j] = -w[2 * jI;
wl2 * n2j + 1] = w[2 * j + 1];

void twiddle_init(int n, double alpha, const std::vector<int>& rho,
std: :vector<double>& w, int offset) {
double theta = -2.0 * PI * alpha / static_cast<double>(n);
for (int j = 0; j < n; ++j) {
double rt = static_cast<double>(rho[j]) * theta;
w[offset + 2 * j] = std::cos(rt);
wloffset + 2 * j + 1] = std::sin(rt);

void permute(std::vector<double>& x, int n, const std::vector<int>& sigma) {
assert(x.size() / 2 == sigma.size());

for (int j = 0; j < n; ++j) {

if (j < sigmal[j]) {
int jO = 2 * j;
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int j1 = jo + 1;

int j2 = 2 * sigma[j];
int j3 = j2 + 1;
double tmpr = x[j0O];
double tmpi = x[jl];
x[j01 = x[j21;

x[j11 = x[]j31;
x[j2] = tmpr;
x[j3] = tmpi;

void bitrev_init(std::vector<int>& rho) {
int n = rho.size();

auto binary_len = static_cast<int>(std::ceil(
std: :log(static_cast<double>(n)) / std::10g(2.0)));
std::vector<bool> bits(binary_len);
std::vector<int> pwrs(binary_len);
pwrs[0] = 1;
for (int j = 1; j < binary_len; ++j) {
pwrs[jl = pwrs[j - 1] * 2;

}
int j = 0;
while (j < n - 1) {
J++
int lastbit = 0;
while (bits[lastbit]) {
bits[lastbit] = false;
lastbit++;
}
bits[lastbit] = true;
int val = 0;
for (int k = 0; k < binary_len; ++k) {
if (bits[k]) {
val += pwrs[binary_len - k - 1];
}
}
rho[j] = val;
}

void fft_init(int n, std::vector<double>& w,
std::vector<double>& tw, std::vector<int>& rho_np) {
bitrev_init(rho_np);
ufft_init(n, w);

twiddle_init(n, 0, rho_np, tw, 0);

static void
calcError(const std::vector<double>& xlocal, const std::vector<double>& xarr) {
double error = 0.0;
for (int c{0}; c < xlocal.size(); c++) {
double lerror = std::abs(xlocall[c] - xarr[c]);
error += lerror;
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}

std::cout << "local error is

<< (error / static_cast<double>(xlocal.size())) << std::endl;

main(int argc, charx argv[]) {
if (argc < 2) {
std::cerr << "Usage:

<< argv[0] <<

std::cerr << " where N is the problem size (power of 2)" << std::endl;

return -1;
}
int n;
n = std::stoi(argv[l]);
std::vector<double> data(n);

n /= 2;
for (int i = 0; 1 < n; 1 += 2) {
data[i] = static_cast<double>(i) / 2.0;

std::vector<double> old(data);

std::vector<double> w(n);
std: :vector<double> tw(2 * n);
std::vector<int> rho_np(n);

auto t = std::chrono::high_resolution_clock
fft_init(n, w, tw, rho_np);

// forward fft

permute(data, n, rho_np);

ufft(data, 0, n, true, w);

// inverse fft
permute(data, n, rho_np);
ufft(data, 0, n, false, w);

double ninv = 1.0 / static_cast<double>(n);

for (int j = 0; j <2 * n; ++j) {
datal[j] *= ninv;

calcError(data, old);

<N>

<< std::endl;

inow();

auto tl = std::chrono::high_resolution_clock: :now();

std::cout << "Sequential part took "
<< std::chrono::duration_cast<std
tl - t).count() << " ms."

calcError(data, old);

return 0;

::chrono::milliseconds>(
<< std::endl;
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sequential_lu.cpp

#include <iostream>
#include <chrono>
#include "lib/src/linalg.h"

int main(int argc, charx argv[]) {
if (argc < 2) {
std::cerr << "Usage: " << argv[0] << " <n>" << std::endl;
std::cerr << " will start LU decomposition on a n by n matrix."
<< std::endl;
return 1;

}
int n = std::stoi(argv[1l]);

alglib::real_2d_array a;
alglib::integer_ld_array piv;

a.setlength(n, n);
piv.setlength(n);

for (int i{0}; 1 < n; ++1i) {
for (int j{0}; j < n; ++j) {
al[i][j] = (alglib::randomreal() * 65.536) - 32.768;

auto tl = std::chrono::high_resolution_clock::now();
alglib::rmatrixlu(a, n, n, piv);
auto t2 = std::chrono::high_resolution_clock: :now();

auto time = std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1);
std::cout << "Sequential computation took " << time.count() << " ms.
<< std::endl;

B.4 Miscellaneous

commstress.cpp

#include <bsp_program.hpp>
#include <random>
#include <iostream>

VETS
* benchmarks the communication aspects of the bsp pattern
*/
struct communication stress : public bsp_node {
int NITERS = 10000;

void parallel_function() override {
using clock = std::chrono::high_resolution_clock;
using duration = std::chrono::nanoseconds;

std::random_device rd;
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std: :mt19937 mersenne(rd());
std::uniform_int_distribution uid(©, NITERS - 1);

long long int rng_duration = 0;

if (bsp_pid() == 0) {
// benchmarking the time spent on an RNG call
int x = 0;

auto rng_start = clock::now();
for (int i{0}; i < NITERS; ++i) {
if (i % 2) x += uid(mersenne);
else x -= uid(mersenne);
}
auto rng_stop = clock::now();
auto dur = std::chrono::duration_cast<duration>(
rng_stop - rng_start).count();
rng_duration = dur / NITERS;
// Use the value
std::cout << "RNG benchmark: a single RNG call takes "
<< rng_duration << " ns (value is "
<< "), whole op takes "
<< dur << "ns" << std::endl;

<< X

// Test #1: insertion of random values inside random workers'
bsp_variable<int> var = get_variable<int>(0);

auto start = clock::now();

for (size_t i{0}; i < NITERS; ++i) {
size_t next = uid(mersenne) % bsp_nprocs();
var.bsp_put(uid(mersenne), next);
bsp_sync();

}
if (bsp_pid() == 0) {
auto time = std::chrono::duration_cast<duration>(
clock::now() - start).count() - (2 = NITERS * rng_duration);
std::cout << "--- PHASE 1 - VARIABLES ---" << std::endl;
std::cout << "Spent " << time << "ns" << std::endl;
std::cout << "That is, " << time / NITERS << "ns per operation"
<< std::endl;
}

variables

// Test #2: replacement of arrays inside random worker's memory

bsp_array<int> arrl = get_empty_array<int>(NITERS);
std: :vector<int> swap(NITERS);

auto gen = [&]() { return uid(mersenne); };
std::generate(swap.begin(), swap.end(), gen);

start = clock::now();

for (size_t i{0}; i < NITERS; ++i) {
size_t next = uid(mersenne) % bsp_nprocs();
arrl.bsp_put(swap, next);
bsp_sync();
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if (bsp_pid() == 0) {
auto time = std::chrono::duration_cast<duration>(
clock::now() - start).count() - (NITERS * rng_duration);

std::cout << "--- PHASE 2 - ARR_SWAP ---" << std::endl;
std::cout << "Spent " << time << "ns" << std::endl;
std::cout << "That is, " << time / NITERS << "ns per operation"

<< std::endl;

// Test #3: replacement of portion of arrays inside
// random positions in a random worker's memory

bsp_array<int> arr2 = get_empty_array<int>(NITERS);
std: :vector<int> empl(10);
std::generate(empl.begin(), empl.end(), gen);

start = clock::now();

for (size_t i{0}; i < NITERS; ++i) {
size_t next = uid(mersenne) % bsp_nprocs();
size_t pos = uid(mersenne) % (NITERS - 10);
arr2.bsp_put(empl, next, pos, 10);
bsp_sync();

if (bsp_pid() == 0) {
auto time = std::chrono::duration_cast<duration>(
clock::now() - start).count() - (2 * NITERS * rng_duration);

std::cout << "--- PHASE 3 - ARR_EMPLACE ---" << std::endl;

std::cout << "Spent " << time << "ns" << std::endl;

std::cout << "That is, " << time / NITERS << "ns per operation"
<< std::endl;

// Test #4: replacement of elements in random positions
// 1in arrays inside random worker's memory

bsp_array<int> arr3 = get_empty_array<int>(NITERS);

start = clock::now();
for (size_t i{0}; i < NITERS; ++i) {
size_t next = uid(mersenne) % bsp_nprocs();
for (size_t j{0}; j < 50; ++j) {
size_t pos = uid(mersenne) % NITERS;
arr3.bsp_put(bsp_pid(), next, pos);
}
bsp_sync();

if (bsp_pid() == 0) {
auto time = std::chrono::duration_cast<duration>(
clock::now() - start).count() - (NITERS * rng_duration) -
(50 * NITERS * rng_duration);

std::cout << "--- PHASE 4 - ARR_PUT ---" << std::endl;

std::cout << "Spent " << time << "ns" << std::endl;

std::cout << "That is, " << time / (NITERS * 50)

<< "ns per operation" << std::endl;
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int main() {
std::vector<std::unique_ptr<bsp_node>> nodes;
for (size_t i{0}; i < 4; ++i) {
nodes.push_back(std: :make_unique<communication_stress>());
}
bsp_program mbsp(std::move(nodes));
mbsp.start();

BSPbhench. cpp

#include <array>
#include <cmath>
#include <bsp_program.hpp>

struct bspbench : public bsp_node {
int maxH, maxN, niters;
const double MEGA = 1000000.0;

bspbench(int _maxH, int _maxN, int _niters)
maxH{_maxH}, maxN{_maxN}, niters{_niters} {};

std::array<double, 2>

leastsquares(int h0, int hl, const std::vector<double>& t) const {
std::array<double, 2> ret{};
auto nh = static_cast<double>(hl - h0 + 1);

double sumt = 0.0;
double sumth = 0.0;

for (int h = hO; h <= hl; ++h) {
sumt += t[h];
sumth += t[h] * h;
}
double sumh = static_cast<double>(hl * hl - hO * h® + hl + hQ) / 2;
double sumhh = static_cast<double>(hl * (hl + 1) * (2 * hl + 1)
(h@ - 1) = hO * (2 *= hO - 1)) / 6;

if (std::abs(nh) > std::abs(sumh)) {
double a = sumh / nh;
ret[0] = (sumth - a * sumt) / (sumhh - a % sumh);
ret[1] = (sumt - sumh * ret[0]) / nh;

} else {
double a = nh / sumh;
ret[0] = (sumt - a * sumth) / (sumh - a * sumhh);
ret[1] = (sumth - sumhh * ret[0]) / sumh;

return ret;

}

void parallel_function() override {
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double r = 0.0;

std:
std:
std:

std:
std:
std:

std:

int
int

bsp_
bsp_

for

:vector<double> x(maxN);
:vector<double> y(maxN);
:vector<double> z(maxN);

:vector<int> destproc(maxH);
:vector<int> destindex(maxH);

:vector<double> src(maxH);

:vector<double> t(maxH + 1);

p = bsp_nprocs();
s = bsp_pid();

array<double> Time
array<double> Dest

get_empty_array<double>(p);
get_empty_array<double>(2 * maxH + p);

(int n = 1; n <= maxN; n *= 2) {

double alpha = 1.0 / 3.0;

double beta = 4.0 / 9.0;

for (int i = 0; 1 < n; ++i) {
z[i] = x[i] = y[i] = i;

auto time® = std::chrono::high_resolution_clock: :now();
for (int iter = 0; iter < niters; ++iter) {
for (int 1 = 0; 1 < n; ++1) {
y[i] += alpha * x[i];

}

for (int i = 0; i < n; ++i) {
z[i] -= beta * x[i];

}

}

auto timel = std::chrono::high_resolution_clock: :now();

auto time = std::chrono::duration_cast<std::chrono::milliseconds>(
timel - time@).count() / 1000.0;

Time.bsp_put(time, 0, s);

bsp_sync();

if (s == 0) {
auto time_arr = Time.BSPunsafe_access();
double mintime = time_arr[0];
double maxtime = time_arr[0];
for (int sl = 1; sl < p; ++sl) {
mintime = std::min(mintime, time_arr[sl]);
maxtime = std::max(maxtime, time_arr[sl]);
}
if (mintime > 0.0) {
int nflops = 4 * niters * n;
r=20.0;
for (int s1 = 0; sl < p; ++sl) {
r += static_cast<double>(nflops) / time_arr[sl];
}
r /= static_cast<double>(p);
std::cout << "n=
<< n << " min=
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for (int
for

auto
for

}

auto
auto

if (

if (s ==
auto
std:
temp
std:

std:

std:

<< nflops / (maxtime * MEGA) << " max= "
<< nflops / (mintime * MEGA) << " av=
<< r / MEGA << " Mflop/s" << std::endl;
std::cout << " fool=" << y[n - 1] + z[n - 1] << std::endl;
} else {
std::cout << "minimum time is 0" << std::endl;

}

h = 0; h <= maxH; ++h) {
(int i = 0; i < h; ++1) {
src[i] = 1i;
if (p==1){

destproc[i] = 0O;
destindex[i] = i;
} else {

destproc[i] = (s + 1 +1 % (p - 1)) % p;
destindex[i]l = s + (i / (p - 1)) * p;

time® = std::chrono::high_resolution_clock: :now();
(int iter = 0; iter < niters; ++iter) {
for (int i = 0; i < h; i++) {

Dest.bsp_put(src[i], destproc[i], destindex[i]);
}
bsp_sync();

timel = std::chrono::high_resolution_clock::now();
time = std::chrono::duration_cast<std::chrono::milliseconds>(
timel - time@).count() / 1000.0;

s ==0) {

t[h] = (time * r) / static_cast<double>(niters);

std::cout << "Time of " << h << "-relation= "
<< time / niters << " sec= " << t[h] << " flops"
<< std::endl;

0) {

temp = leastsquares(0, p, t);

:cout << "Range h=0 to p: g="
<< std::endl;

= leastsquares(p, maxH, t);

:cout << "Range h=p to HMAX: g= " << temp[0] << ", 1= "
<< temp[l] << std::endl;

<< temp[0] << ", 1=

<< temp[1]

:cout << "The bottom line for this BSP computer is:"
<< std::endl;

icout << "p= " << p << ", r=" << r / MEGA << " Mflop/s, g= "
<< temp[0] << ", 1= " << temp[l] << std::endl;
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int main(int argc, charx argv[]) {

int nprocs, maxh, maxn, niters;

if (argc == 1) {

std::cerr << "Usage: " << argv[0] << " <P> (NITERS) (MAXN) (MAXH)"

<< std::endl;

std::cerr << "<..> are obligatory parameters" << std::endl;
std::cerr << "(..) are optional" << std::endl;
return -1;

nprocs = std::stoi(argv([1l]);

if (argc >= 3) {

niters = std::stoi(argv([2]);

} else {

}

niters = 10000;

if (argc >= 4) {

maxn = std::stoi(argv[3]);

} else {

}

maxn = 1024;

if (argc >= 5) {

maxh = std::stoi(argv[4]);

} else {
maxh = 128;
}
std::vector<std::unique_ptr<bsp_node>> nodes;

for (size_t i{0}; i < nprocs; ++i) {

}

nodes.push_back(std: :make_unique<bspbench>(maxh, maxn, niters));

bsp_program mbsp(std::move(nodes));

mbsp.

start();

ff_example.cpp

#include
#include
#include
#include

<iostream>
<iterator>
<algorithm>
"bsp_program.hpp"

struct ff example : public bsp_node {

void

parallel_function() override {

int s = bsp_pid();

auto vl = (const std::vector<long>*) fastflow_input;

long count = 0;

int portion_size = vl->size() / bsp_nprocs();

for (int i{portion_size * s}; i < portion_size * (s + 1); ++i)

count += vl->at(i);

bsp_array<long> counts = get_empty_array<long>(bsp_nprocs());
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counts.bsp_put(count, 0, s);
bsp_sync();
if (s == 0) {
long total = 0;
for (long 1: counts.BSPunsafe_access()) {
total += 1;
}
emit_output((voidx) total);

+;

struct generator : public ff::ff_node {
void* svc(void* in) override {
auto source = new std::vector<long>;
for (int i{0}; i < 10; ++i) source->push_back(i);
ff_send_out(source);
return EOS;

+

struct checker : public ff::ff_node {
void* svc(void+ in) override {

if (in != GO_ON && in != EO0S) {
auto val = (long) in;
if (val == 45) std::cout << "OK" << std::endl;
else std::cout << "KO" << std::endl;

}

return GO_ON;

+

int main() {
std::vector<std::unique_ptr<bsp_node>> nodes;
for (int i{0}; 1 < 2; ++1i) {
nodes.push_back(std: :make_unique<ff_example>());
}
auto pre_fun = []() {
std::cout << "Before BSP computation" << std::endl;
}
auto post_fun = []1() {
std::cout << "After BSP computation" << std::endl;
}
bsp_program computation(std::move(nodes), pre_fun, post_fun);
generator g;
checker c;

ff::ff_Pipe<> pipe(g, computation, c);
if (pipe.run_and_wait_end() < 0)

std::cout << "Error in running pipe" << std::endl;
return 0O;
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mwe . cpp

+

#include <iostream>
#include <iterator>
#include <algorithm>
#include <thread>
#include "bsp_program.hpp"

struct my _bsp_comp : public bsp_node {

void parallel_function() override {
int s = bsp_pid();
int n = bsp_nprocs();
auto vl = get_variable<int>(10);
vl.bsp_put(s, (s + 1) % n);
bsp_sync();
std::vector<int> init{s, s, s, s};
auto al = get_array<int>(init);
al.bsp_put(init, (s + 1) % n, 0, 2, 2);
bsp_sync();
auto a = al.bsp_direct_get(s);
std::this_thread::sleep_for(std::chrono::seconds(s));
std::cout << s <<

std::cout << s << ": al is ";

std: :copy(a.begin(),
a.end(),
std::ostream_iterator<int>(std::cout, " "));

std::cout << std::endl;

int main() {

std::vector<std::unique_ptr<bsp_node>> nodes;
for (int i{0}; i < 2; ++i) {
nodes.push_back(std: :make_unique<my_bsp_comp>());
}
auto pre_fun = [1() {
std::cout << "Before BSP computation" << std::endl;
b
auto post_fun = [1() {
std::cout << "After BSP computation" << std::endl;
b
bsp_program computation(std::move(nodes), pre_fun, post_fun);
computation.start();
return 0;

unit_tests.cpp

#include <bsp_program.hpp>

static bool ok = true;
static int total_tests = 35;

static int mod(int k, int n) {

return ((k %= n) < 0) 2 k + n : k;
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": vl is " << vl.bsp_direct_get(s) << std::endl;
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static void assertint(int a, int b, int id, int line) {
std::string s;
if (a !'=b) {
s += "Node " + std::to_string(id) + ": mismatch at line " +
std::to_string(line)
+ " (expected " + std::to_string(b) + ", obtained " +
std::to_string(a) + ")";
std::cerr << s << std::endl;
ok = false;

static void assertint(int a, int b, int c, int id, int line) {
std::string s;
if (a '=b && a !'=c¢c) {
s += "Node " + std::to_string(id) + ": mismatch at line " +
std::to_string(line)
+ " (expected " + std::to_string(b) + " or " + std::to_string(c) +
", obtained " + std::to_string(a) + ")";
std::cerr << s << std::endl;
ok = false;

static void
assertvec(const std::vector<int>& a, const std::vector<int>& b, int id,
int line) {
std::string s;
auto printvect = [](const std::vector<int>& v) {
std::string s{"["};
for (const auto& el: v) {
s += std::to_string(el) + " ";

}
s.pop_back();
s += "1
return s;
b
if (a !'=b) {
s += "Node " + std::to_string(id) + ": mismatch at line " +
std::to_string(line)
+ " (expected " + printvect(b) + ", obtained " + printvect(a) +
")
std::cerr << s << std::endl;
ok = false;
}

static void assertvec(const std::vector<int>& a, const std::vector<int>& b,
const std::vector<int>& c, int id, int line) {
std::string s;
auto printvect = [](const std::vector<int>& v) {
std::string s{"["};
for (const auto& el: v) {
s += std::to_string(el) + " ";
}
s.pop_back();
s +="1";
return s;
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b
if (a '=b & a '=c) {
s += "Node " + std::to_string(id) + ": mismatch at line " +
std::to_string(line)
+ " (expected " + printvect(b) + " or
", obtained " + printvect(a) + ")";
std::cerr << s << std::endl;
ok = false;

+ printvect(c) +

struct unit tests : public bsp_node {
void parallel_function() override {

auto endfun = [this](bool end = false) {
static int passed_tests = 0;
if (end) {
std::cout << "Number of tests executed successfully:
<< passed_tests << "/" << total_tests << std::endl;
if (passed_tests == total_tests)
std::cout << "ALL TESTS COMPLETED SUCCESSFULLY!"

<< std::endl;
else
std::cerr
<< "Some tests failed, "
<< "refer to the logs for more information"
<< std::endl;
} else {
if (ok) {

passed_tests++;
std::cout << "Test passed";
} else std::cout << "Test failed";
std::cout << " (" << passed_tests << "/" << total_tests << ")"
<< std::endl;

ok = true;
}
}
if (bsp_pid() == 0) {
std: :cout
<< "PART 1 : VARIABLES (SEQ)"
<< std::endl;
std: :cout
<< "Test 1: bsp_put(const T& elem, int id)"
<< std::endl;
}

bsp_variable<int> vl = get_variable(-1);

v1l.bsp_put(bsp_pid(), bsp_pid());

bsp_sync();

assertint(vl.BSPunsafe_access(), bsp_pid(), bsp_pid(), __LINE__);

if (bsp_pid() == 0) {
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endfun();

std::cout
<< "Test 2 : bsp_put(const bsp_variable<T>& other)"
<< std::endl;

}

bsp_variable<int> v2 = get_variable(-1);

v2.bsp_put(vl);

bsp_sync();

assertint(v2.BSPunsafe_access(), bsp_pid(), bsp_pid(), __LINE__);

if (bsp_pid() == 0) {

endfun();

std::cout
<< "Test 3 : bsp_put(const bsp_variable<T>& other, int id)"
<< std::endl;

}
bsp_variable<int> v3 = get_variable(-1);

v3.bsp_put(v2, mod((bsp_pid() + 1), bsp_nprocs()));
bsp_sync();

assertint(v3.BSPunsafe_access(), mod((bsp_pid() - 1), bsp_nprocs()),
bsp_pid(), __LINE__);

if (bsp_pid() == 0) {

endfun();

std::cout
<< "Test 4: bsp_put(int destination)"
<< std::endl;

}
bsp_variable<int> v4 = get_variable(bsp_pid());

int nextnode = mod(bsp_pid() + 1, bsp_nprocs());
v4.bsp_put(nextnode);
bsp_sync();

assertint(v4.BSPunsafe_access(), mod((bsp_pid() - 1), bsp_nprocs()),
bsp_pid(), __LINE__);

if (bsp_pid() == 0) {
endfun();
std: :cout
<< "Test 5: bsp_get(int destination)"
<< std::endl;

bsp_variable<int> v5 = get_variable(bsp_pid());
bsp_sync(); // needed to make sure all nodes have time to create the variable

v5.bsp_get(nextnode);
bsp_sync();
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assertint(v5.BSPunsafe_access(), nextnode, bsp_pid(), __LINE__);

if (bsp_pid() == 0) {

endfun();

std::cout
<< "PART 2 : VARIABLES (PAR)"
<< std::endl;

std::cout
<< "Test 6: bsp_put(const T& elem, int id)"
<< std::endl;

}
bsp_variable<int> v6 = get_variable(bsp_pid());

if (bsp_pid() != 0) v6.bsp_put(bsp_pid(), 0);
bsp_sync();

if (bsp_pid() == 0) {
assertint(v6.BSPunsafe_access(), 1, 2, bsp_pid(), __LINE__);

endfun();

std: :cout
<< "Test 7 : bsp_put(const bsp_variable<T>& other, int id)"
<< std::endl;

bsp_variable<int> v7 = get_variable(-1);
if (bsp_pid() != 0) v7.bsp_put(v6, 0);

bsp_sync();
if (bsp_pid() == 0) {
assertint(v7.BSPunsafe_access(), 1, 2, bsp_pid(), __LINE__);
endfun();
std::cout
<< "Test 8: bsp_put(int destination)"
<< std::endl;
}

bsp_variable<int> v8 = get_variable(bsp_pid());
if (bsp_pid() != 0) v8.bsp_put(0);
bsp_sync();

if (bsp_pid() == 0) {
assertint(v8.BSPunsafe_access(), 1, 2, bsp_pid(), __LINE__);
endfun();
std::cout
<< "PART 3: ARRAYS (SEQ)"
<< std::endl;
std::cout
<< "Test 9 : bsp_put(const T& elem, int pos)"
<< std::endl;

}
std::vector<int> base_array{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
std::vector<int> compare_arrayl{bsp_pid(), 8, 7, 6, 5, 4, 3, 2, 1, 0};

bsp_array<int> al = get_array(base_array);
al.bsp_put(bsp_pid(), 0);
bsp_sync();
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assertvec(al.BSPunsafe_access(), compare_arrayl, bsp_pid(), __LINE__);

if (bsp_pid() == 0) {

endfun();

std::cout
<< "Test 10: bsp_put(const bsp_variable<T>& elem, int pos)"
<< std::endl;

bsp_array<int> a2 = get_array(base_array);
bsp_variable<int> v9 = get_variable(bsp_pid());
a2.bsp_put(v9, 0);

bsp_sync();

assertvec(a2.BSPunsafe_access(), compare_arrayl, bsp_pid(), __LINE__);

if (bsp_pid() == 0) {

endfun();

std::cout
<< "Test 11 : bsp_put(T elem, int dest, int pos)"
<< std::endl;

}
int prevnode = mod(bsp_pid() - 1, bsp_nprocs());
std: :vector<int> compare_array2{prevnode, 8, 7, 6, 5, 4, 3, 2, 1, 0};

bsp_array<int> a3 = get_array(base_array);

a3.bsp_put(bsp_pid(), nextnode, 0);

bsp_sync();
assertvec(a3.BSPunsafe_access(), compare_array2, bsp_pid(), __LINE__);
if (bsp_pid() == 0) {
endfun();
std::cout
<< "Test 12 : bsp_put(bsp_variable<T>"
<< "elem, int dest, int pos)"
<< std::endl;
}

bsp_array<int> a4 = get_array(base_array);
bsp_variable<int> v10 = get_variable(bsp_pid());
ad.bsp_put(v1l0, nextnode, 0);

bsp_sync();

assertvec(a4.BSPunsafe_access(), compare_array2, bsp_pid(), __LINE__);

if (bsp_pid() == 0) {

endfun();

std::cout
<< "Test 13 : bsp_put(std::vector<T> other)"
<< std::endl;

std: :vector<int> replace_array{bsp_pid(), 1, 2, 3, 4};
bsp_array<int> a5 = get_array(base_array);
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a5.bsp_put(replace_array);
bsp_sync();

assertvec(a5.BSPunsafe_access(), replace_array, bsp_pid(), __LINE__);

if (bsp_pid() == 0) {
endfun();
std::cout
<< "Test 14 : bsp_put(bsp_array<T> other)"
<< std::endl;

}

bsp_array<int> a6 = get_array(base_array);
bsp_array<int> a7 = get_array(replace_array);

a6.bsp_put(a7);
bsp_sync();

assertvec(a6.BSPunsafe_access(), replace_array, bsp_pid(), __LINE__);

if (bsp_pid() == 0) {

endfun();

std::cout
<< "Test 15 : bsp_put(std::vector<T> other, int dest)"
<< std::endl;

}
auto control_arrayl = std::vector<int>{prevnode, 1, 2, 3, 4};
bsp_array<int> a8 = get_array(base_array);

a8.bsp_put(replace_array, nextnode);
bsp_sync();

assertvec(a8.BSPunsafe_access(), control_arrayl, bsp_pid(), __LINE__);

if (bsp_pid() == 0) {
endfun();
std::cout
<< "Test 16 : bsp_put(bsp_array<T> other, int dest)"
<< std::endl;

bsp_array<int> a9 = get_array(base_array);
bsp_array<int> al® = get_array(replace_array);

a9.bsp_put(ald, nextnode);
bsp_sync();

assertvec(a9.BSPunsafe_access(), control_arrayl, bsp_pid(), __LINE__);

if (bsp_pid() == 0) {
endfun();
std: :cout
<< "Test 17 : bsp_put(vector<T>, src_off, dst_off, len)"
<< std::endl;
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std::vector<int> substitution{0, 1, 2, 3, 4};

for (auto& el: substitution) el += bsp_pid();

std::vector<int> control_array2(base_array);

std::copy_n(substitution.begin() + 1, 3, control_array2.begin() +
2);

// {9, n+l, n+2, n+3, 5, 4, 3, 2, 1, 0}

bsp_array<int> all = get_array(base_array);
all.bsp_put(substitution, 1, 2, 3);
bsp_sync();

assertvec(all.BSPunsafe_access(), control_array2, bsp_pid(), __LINE__);

if (bsp_pid() == 0) {
endfun();
std: :cout
<< "Test 18: bsp_put(bsp_array<T>, src_off, dst_off, len)"
<< std::endl;
}

bsp_array<int> al2
bsp_array<int> al3

get_array(base_array);
get_array(substitution);

al2.bsp_put(al3, 1, 2, 3);

bsp_sync();
assertvec(al2.BSPunsafe_access(), control_array2, bsp_pid(), __LINE__);
if (bsp_pid() == 0) {
endfun();
std: :cout
<< "Test 19 : bsp_put(vector<T>, dest, "
<< "src_off, dst_off, len)"
<< std::endl;
}

std::vector<int> substitution2{0, 1, 2, 3, 4};

for (auto& el: substitution2) el += prevnode;

std::vector<int> control_array3(base_array);
std::copy_n(substitution2.begin() + 1, 3, control_array3.begin() + 2);

bsp_array<int> al4 = get_array(base_array);
ald.bsp_put(substitution, nextnode, 1, 2, 3);
bsp_sync();

assertvec(al4.BSPunsafe_access(), control_array3, bsp_pid(), __LINE__);

if (bsp_pid() == 0) {
endfun();
std::cout
<< "Test 20: bsp_put(bsp_array<T>, dest, "
<< "src_off, dst_off, len)"
<< std::endl;

bsp_array<int> al5 = get_array(base_array);
bsp_array<int> al6 = get_array(substitution);
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al5.bsp_put(al6, nextnode, 1, 2, 3);
bsp_sync();

assertvec(al5.BSPunsafe_access(), control_array3, bsp_pid(), __LINE__);

if (bsp_pid() == 0) {
endfun();
std::cout
<< "Test 21 : bsp_get(int destination)"
<< std::endl;

}

std::vector<int> fillpids(5, bsp_pid());
bsp_array<int> al7 = get_array(fillpids);
bsp_sync();

al7.bsp_get(nextnode);
bsp_sync();

assertvec(al7.BSPunsafe_access(), std::vector<int>(5, nextnode),
bsp_pid(), __LINE__);

if (bsp_pid() == 0) {
endfun();
std: :cout
<< "Test 22 : bsp_get(source, src_offs, dest_offs, length)"
<< std::endl;
}

std::vector<int> base_arr2{0, 1, 2, 3, 4};

for (auto& el: base_arr2) el += bsp_pid();

std: :vector<int> control_array4{nextnode + 1, nextnode + 2,
nextnode + 3, bsp_pid() + 3,
bsp_pid() + 4};

bsp_array<int> al8 = get_array(base_arr2);

bsp_sync();

al8.bsp_get(nextnode, 1, 0, 3);
bsp_sync();

assertvec(al8.BSPunsafe_access(), control_array4, bsp_pid(), __LINE__);

if (bsp_pid() == 0) {

endfun();

std: :cout
<< "PART 4: ARRAYS (PAR)"
<< std::endl;

std: :cout
<< "Test 23&24: bsp_put(T elem, int dest, int pos)"
<< std::endl;

std::cout << "Different positions" << std::endl;

}
bsp_array<int> al9 = get_array(base_array);

al9.bsp_put(bsp_pid(), 0, bsp_pid());
bsp_sync();
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auto compare_array5 = std::vector<int>{0, 1, 2, 6, 5, 4, 3, 2, 1, 0};
if (bsp_pid() == 0) {
assertvec(al9.BSPunsafe_access(), compare_array5, bsp_pid(),
__LINE__);
endfun();
std::cout << "Same position" << std::endl;

}
bsp_array<int> a20 = get_array(base_array);

if (bsp_pid() !'= 0) a20.bsp_put(bsp_pid(), 0, 0);
bsp_sync();

if (bsp_pid() == 0) {
assertint(a20.BSPunsafe_access().at(0), 1, 2, bsp_pid(), __LINE _);

endfun();

std::cout
<< "Test 25&26 : bsp_put(bsp_variable<T>, dest, pos)"
<< std::endl;

std::cout << "Different positions" << std::endl;

bsp_array<int> a2l = get_array(base_array);
bsp_variable<int> v11 = get_variable(bsp_pid());

a2l.bsp_put(vll, 0, bsp_pid());

bsp_sync();
if (bsp_pid() == 0) {
assertvec(a2l.BSPunsafe_access(), compare_array5, bsp_pid(),
__LINE__);
endfun();

std::cout << "Same position" << std::endl;

}

bsp_array<int> a22 = get_array(base_array);
bsp_variable<int> v12 = get_variable(bsp_pid());

if (bsp_pid() '= 0) a22.bsp_put(v1l2, 0, 0);
bsp_sync();

if (bsp_pid() == 0) {
assertint(a22.BSPunsafe_access().at(0), 1, 2, bsp_pid(), __LINE__);
endfun();
std::cout
<< "Test 27 : bsp_put(std::vector<T> other, int dest)"
<< std::endl;

bsp_array<int> a23 = get_empty_array<int>(5);

if (bsp_pid() != 0) a23.bsp_put(std::vector<int>(5, bsp_pid()), 0);
bsp_sync();

if (bsp_pid() == 0) {
assertvec(a23.BSPunsafe_access(), std::vector<int>(5, 1),
std::vector<int>(5, 2), bsp_pid(), __LINE__);
endfun();
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std::cout
<< "Test 28 : bsp_put(bsp_array<T> other, int dest)"
<< std::endl;
}

bsp_array<int> a24 = get_empty_array<int>(5);
bsp_array<int> a25 = get_array(std::vector<int>(5, bsp_pid()));

if (bsp_pid() !'= 0) a24.bsp_put(a25, 0);
bsp_sync();

if (bsp_pid() == 0) {
assertvec(a24.BSPunsafe_access(), std::vector<int>(5, 1),
std::vector<int>(5, 2), bsp_pid(), __LINE__);
endfun();
std::cout
<< "Test 29&30: bsp_put(vector<T>, dest, "
<< "src_off, dst_off, len)"
<< std::endl;
std::cout << "Separate positions" << std::endl;

const std::vector<int>& confrontl1{9, 1, 2, 3, 5, 4, 3, 98, 99, 0};
const std::vector<int>& subst1{0, 1, 2, 3, 4, 5};
const std::vector<int>& subst2{95, 96, 97, 98, 99};

bsp_array<int> a26 = get_array(base_array);

if (bsp_pid() == 1) a26.bsp_put(substl, 0, 1, 1, 3);
if (bsp_pid() == 2) a26.bsp_put(subst2, 0, 3, 7, 2);
bsp_sync();

if (bsp_pid() == 0) {
assertvec(a26.BSPunsafe_access(), confrontl, bsp_pid(), __LINE__);
endfun();
std::cout << "Overlapping positions" << std::endl;

}

const std::vector<int>& confront2{9, 8, 7, 1, 2, 3, 4, 98, 99, 0};
const std::vector<int>& confront3{9, 8, 7, 1, 2, 3, 97, 98, 99, 0};

bsp_array<int> a27 = get_array(base_array);

if (bsp_pid() == 1) a27.bsp_put(substl, 0, 1, 3, 4);
if (bsp_pid() == 2) a27.bsp_put(subst2, 0, 2, 6, 3);
bsp_sync();

if (bsp_pid() == 0) {
assertvec(a27.BSPunsafe_access(), confront2, confront3, bsp_pid(),
__LINE__);

endfun();

std::cout
<< "Test 31&32 : bsp_put(bsp_array<T>, dest,
<< "src_off, dst_off, len)"
<< std::endl;

std::cout << "Separate positions" << std::endl;
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bsp_array<int> a28 = get_array(base_array);
bsp_array<int> a29 = get_array(bsp_pid() > 1 ? subst2 : substl);

if (bsp_pid() == 1) a28.bsp_put(a29, 0, 1, 1, 3);
if (bsp_pid() == 2) a28.bsp_put(a29, 0, 3, 7, 2);
bsp_sync();

if (bsp_pid() == 0) {
assertvec(a28.BSPunsafe_access(), confrontl, bsp_pid(), __LINE__);
endfun();
std::cout << "Overlapping positions" << std::endl;

bsp_array<int> a30 = get_array(base_array);
bsp_array<int> a3l = get_array(bsp_pid() > 1 ? subst2 : substl);

if (bsp_pid() == 1) a30.bsp_put(a3l, 0, 1, 3, 4);
if (bsp_pid() == 2) a30.bsp_put(a3l, 0, 2, 6, 3);
bsp_sync();

if (bsp_pid() == 0) {
assertvec(a30.BSPunsafe_access(), confront2, confront3, bsp_pid(),
__LINE__);
endfun();
std: :cout
<< "PART 5 : DIRECT GETS"
<< std::endl;
std: :cout
<< "Test 33 (var) : T bsp_direct_get(int source)"
<< std::endl;
}

bsp_variable<int> v13 = get_variable(bsp_pid());
bsp_sync();

int dgl = v13.bsp_direct _get(0);
v13.bsp_put(bsp_pid(), 0);

bsp_sync();

assertint(dgl, 0, bsp_pid(), __LINE__);

if (bsp_pid() == 0) {

endfun();

std::cout
<< "Test 34 (arr): T bsp_direct_get(int source, int pos)"
<< std::endl;

}

bsp_array<int> a32 = get_array(base_array);
bsp_sync();

int dg2 = a32.bsp_direct_get(0, 3);
a32.bsp_put(bsp_pid(), 0, 3);
bsp_sync();

assertint(dg2, 6, bsp_pid(), __LINE__);

if (bsp_pid() == 0) {
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endfun();
std::cout

<< "Test 35 (arr) : vector<T> bsp_direct_get(int source)"

<< std::endl;

}

bsp_array<int> a33 = get_array(fillpids);
bsp_sync();

auto dg3 = a33.bsp_direct_get(0);
a33.bsp_put(std::vector<int>(5, bsp_pid()));
bsp_sync();

assertvec(dg3, std::vector<int>(5, 0), bsp_pid(), __LINE__);
if (bsp_pid() == 0) {

endfun();
std::cout
<< "TEST ENDED"
<< std::endl;
endfun(true);

}

int main() {
std::vector<std::unique_ptr<bsp_node>> nodes;
for (size_t i{0}; i < 3; ++i) {
nodes.push_back(std: :make_unique<unit_tests>());
}
bsp_program mbsp(std: :move(nodes));
mbsp.start();

B.5 Java programs

BSPpsrs.java

import com.multicorebsp.core.x;
import org.apache.commons.math3.random.MersenneTwister;
import org.apache.commons.math3.util.MathArrays;

import java.util.sx;
import java.util.stream.IntStream;

public class BSPpsrs extends BSP_PROGRAM {

private int n;
private int n_procs;
private int seed;

@Override
protected void main_part() throws InterruptedException {
try {
bsp_begin(n_procs);
} catch (IllegalAccessException | InstantiationException |

EmptyQueueException | InterruptedException e) {

162




20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

65

66

67

68

69

70

71

72

73

74

75

76

77

e.printStackTrace();

@Override
protected void parallel_part() throws InterruptedException,

IllegalAccessException, EmptyQueueException {
BSP_INTEGER problem_size = new BSP_INTEGER(this, 0);
if (bsp_pid() == 0) {

for (int i = 0; i < bsp_nprocs(); ++i) {

problem_size.bsp put(n, 1i);

}
bsp_sync();
n = problem_size.read();

int p = bsp_nprocs();

int s = bsp_pid();

long t = System.currentTimeMillis();

int numels = n / p;

BSP_INT_ARRAY to_sort = new BSP_INT_ARRAY(this, numels);

if (s ==0) {
MersenneTwister mtw;
if (seed == -1) {
mtw = new MersenneTwister();
} else {
mtw = new MersenneTwister(seed);
}
int[] data = IntStream.range(0, n).toArray();
MathArrays.shuffle(data, mtw);
long t2 = System.currentTimeMillis();

System.out.println("Ended vector generation and shuffling (spent "

+ (t2 - t) + "ms)");
System.out.println("Starting parallel part");

t = System.currentTimeMillis();
int count = 0;
for (int i = 0; i < n; i += numels) {
int last = Math.min(n, i + numels);
to_sort.bsp put(data, i, count++, 0, last - 1i);

}
bsp_sync();

int[] vec = to_sort.getData();
Arrays.sort(vec);

ArrayList<Integer> primary_samples = new ArraylList<>();

int samplesize = vec.length / p;

int i;

for (i = 0; i < vec.length; i += samplesize) {
primary_samples.add(vec[i]);

}

if (i !'= vec.length - 1) {
primary_samples.add(vec[i - 1]);
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IntArraylList psam = new IntArraylList();
psam.array.addAll(primary_samples);

BSP_ARRAY<IntArrayList> ps_array = new BSP_ARRAY<>(this, p, psam);
for (i = 0; 1 < p; ++1) {
ps_array.bsp _put(psam, i, s);
}
bsp_sync();

ArrayList<Integer> ps_all = new ArraylList<>();
ArrayList<Integer> secondary_samples = new ArraylList<>();
try {

for (1 =0; i < p; ++1) {

ps_all.addAll(ps_array.read(i).array);

}

Collections.sort(ps_all);

samplesize = ps_all.size() / p;
} catch (NullPointerException e) {

e.printStackTrace();

for (i = 0; i < ps_all.size(); i += samplesize) {
secondary_samples.add(ps_all.get(i));
}

if (i == ps_all.size())
secondary_samples.add(ps_all.get(i - 1));

int upperbound;
int count = 1;

do {
upperbound = secondary_samples.get(count++);
} while (vec[0] > upperbound);

count--;
ArrayList<Integer> temp = new ArraylList<>();

BSP_ARRAY<IntArrayList> portion =
new BSP_ARRAY<>(this, p, new IntArrayList());

for (i = 0; i < vec.length; ++1i) {
if (vec[i] > upperbound) {
portion.bsp_put(new IntArrayList(temp), count - 1, s);
temp.clear();
upperbound = secondary_samples.get(++count);
}
temp.add(vec[i]);

portion.bsp put(new IntArrayList(temp), count - 1, s);
bsp_sync();
ArraylList<Integer> secondary_block = new ArrayList<>();

BSP_ARRAY<IntArrayList> final_arr = new BSP_ARRAY<>(this, p,
new IntArrayList());
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}

for (IntArrayList pbl : portion) {
secondary_block.addAll(pbl.array);
}

Collections.sort(secondary_block);

final_arr.bsp_put(new IntArraylList(secondary_block), 0, s);

bsp_sync();

if (s == 0) {

ArrayList<Integer> conclusion = new ArraylList<>();

for (IntArrayList el : final_arr)
conclusion.addAll(el.array);

boolean passed = true;
for (int j = 0; j < n; ++j) {
if (conclusion.get(j) != j) {
passed = false;
break;

System.out.println("Check " + (passed ? "passed"

long t1 = System.currentTimeMillis();

"failed"));

System.out.println("Parallel part took " + (t1 - t) + " ms.");

bsp_sync();

public static void main(String[] args) {

if (args.length < 2) {

System.err.println("Usage: BSPpsrs <N> <P> (seed)");
System.err.println(" where N is the problem size (power of 2)");

System.err.println(" P is the number of threads (power of 2)");
System.err.println(" N must be >= P"3");
System.err.println(" seed is an optional seed " +

"for permutations (leave blank to randomize it");

System.exit(1);
}
int n, p, s;
n = Integer.parselnt(args[0]);
p = Integer.parselnt(args[1])
if (n<p*p=*p){
System.err.println("N must be >= P"3");
System.exit(1);

’

}

s = (args.length >= 3 ? Integer.parselnt(args[2])
BSPpsrs my_computation = new BSPpsrs();
my_computation.n = n;

my_computation.n_procs = p;

my_computation.seed = s;

my_computation.start();

-1);
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IntArraylList.java

import com.multicorebsp.core.CompulsaryCloneable;

import java.util.ArraylList;

public class IntArrayList implements CompulsaryCloneable<IntArrayList> {
public ArrayList<Integer> array;

public IntArrayList() {
array = new ArraylList<>();

}

public IntArrayList(ArrayList<Integer> other) {
array = new ArraylList<>(other);

}

@Ooverride

public Object clone() throws CloneNotSupportedException {
super.clone();
return safeClone();

@Ooverride
public IntArrayList safeClone() {
return new IntArraylList(array);

}

Sequentiallnprod.java

public class SequentialInprod {

public static void main(String[] args) {
if (args.length < 1) System.exit(1);

int n

1;

try {
n = Integer.parselnt(args[0]);

} catch (NumberFormatException e) {
System.err.println("Argument must be an integer");
System.exit(-1);

double(] new double[n];

x
1l

for (int 1 = 0; 1 < n; ++1) {
x[i] + 1;

1l
-

double inprod = 0.0;
long tl = System.currentTimeMillis();

for (int i = 0; i < n; ++i) {
inprod += x[i] * x[i];
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long t2 = System.currentTimeMillis();

System.out.println("Processor 0: sum of squares up to " + n + "x"
+n+ " is " + inprod);
System.out.println("Processor 0: local time taken is " + (t2 - t1));

double dn = (double) n;
dn *=n + 1.0;

dn *= 2.0 * n + 1.0;

dn /= 6.0;

System.out.println("Checksum: " + dn);

System.exit(0);

SequentialSort.java

import java.util.x;
import java.util.stream.Collectors;

public class SequentialSort {

private static void arrshuffle(int[] array, Random rd) {
for (int i = array.length - 1; i > 0; i--) {
int index = rd.nextInt(i + 1);
// Simple swap
int a = array[index];
array[index] = array[i];
array[i] = a;

}

public static void main(String[] args) {

if (args.length < 1) {
System.err.println("Usage: seqsort <N> (seed)");
System.err.println(" where N is the problem size (power of 2)");
System.err.println(" seed is an optional seed for " +

"permutations (leave blank to randomize it)");

System.exit(1);

}

intn=1, s = -1;

try {
n = Integer.parselnt(args[0]);

} catch (NumberFormatException e) {
System.err.println("First argument must be an integer");
System.exit(-1);

}
if (args.length >= 2) {

try {

s = Integer.parselnt(args[1]);

} catch (NumberFormatException e) {
System.err.println("Second argument must be an integer");
System.exit(-1);

}

}
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long t = System.currentTimeMillis();

Random rd = new Random();

if (s == -1) {
s = rd.nextInt();

}

rd.setSeed(s);

int[] data = new int[n];

for (int 1 = 0; 1 < n; ++1) {
datal[i] = i;

arrshuffle(data, rd);

List<Integer> list = Arrays.stream(data).boxed()
.collect(Collectors.tolList());

long tl = System.currentTimeMillis();

System.out.println("Ended vector generation and shuffling (spent " +
(tl - t) + " ms)");

System.out.println("starting sequential part");

long t2 = System.currentTimeMillis();
Arrays.sort(data);
long t3 = System.currentTimeMillis();
Collections.sort(list);
long t4 = System.currentTimeMillis();
boolean passed = true;
for (int j = 0; j < n; j++) {

if (datalj] !'= j) {

passed = false;
break;

System.out.println("Check " + (passed ? "passed" : "failed"));
System.out.println("Parallel part took " + (t3 - t2) + " ms.");
System.out.println("Collections part took " + (t4 - t3) + " ms.");

SequentialFFT. java

import java.util.Arrays;
public class SequentialFFT {
private final static double PI = 3.141592653589793;
private static void ufft(double[] x, int offset, int n, boolean sign,

double[] w) {
for (int k = 2; k <= n; k *= 2) {

int nk = n / k;
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for (int r = 0; r < nk; ++r) {
int rk = 2 * r = k;
j

for (int j = 0; j < k; j += 2) {
double wr = w[j * nk]
double wi;
if (sign) {
wi=w[j * nk + 1];
} else {
wi = -w[j * nk + 1]
}
int jO = rk + j + offset;
int j1 = jo + 1;
int j2 = jOo + k;
int j3 = j2 + 1;

double taur = wr * x[j2] - wi * x[j3];
double taui = wi * x[j2] + wr * x[j3];

x[j2] = x[jO] - taur;
x[j3] = x[j1] - taui;
x[jO] += taur;
x[j1l] += taui;
}
}
}
}
private static void ufft_init(int n, double[] w) {
assert (w.length == n);
if (n == 1) return;
wlo] = 1.0;
= 0.0;

if (n == 4) {
w[2] = 0.0;
w[3] = -1.0;
} else if (n >= 8) {
double theta = -2.0 * PI / (double) (n);
for (int j = 1; j <= n / 8; j++) {
w[2 * j] = Math.cos(j * theta);
w[2 * j + 1] = Math.sin(j * theta);

for (int j = 0; j <n / 8; j++) {
int ndj =n / 4 - j;
w[2 * nd4j] = -w[2 * j + 1];
w[2 * ndj + 11 = -w[2 * j];

for (int j = 1; j <n / 4; j++) {
int n2j =n/ 2 - j;
w2 * n2j] = -w[2 * jI1;
w[2 * n2j + 1] = w[2 * j + 1];
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private static void twiddle_init(int n, double alpha, int[] rho,
double[] w, int offset) {
double theta = -2.0 * PI * alpha / (double) (n);
for (int j = 0; j < n; ++j) {
double rt = (double) (rho[j]) * theta;
w[offset + 2 * j] = Math.cos(rt);
w[offset + 2 * j + 1] = Math.sin(rt);

private static void permute(double[] x, int n, int[] sigma) {
assert (x.length / 2 == sigma.length);

for (int j = 0; j < n; ++j) {
if (j < sigmalj]) {

int jOo = 2 * j;
int j1 = jO + 1;
int j2 = 2 x sigmalj];
int j3 = j2 + 1;
double tmpr = x[j0O];
double tmpi = x[jl];
x[jo] = x[j2];

x[j1] = x[j3];
x[j2] = tmpr;
x[j3] = tmpi;

}

private static void bitrev_init(int[] rho) {
int n = rho.length;

int binary_len = (int) (Math.ceil(Math.log((double)(n))/Math.log(2.0)));
boolean[] bits = new boolean[binary_len];
int[] pwrs = new int[binary_len];
pwrs[0] = 1;
for (int j = 1; j < binary_len; ++j) {
pwrs[j] = pwrs[j - 1] * 2;
}
int j = 0;
while (j < n - 1) {
J++;
int lastbit = 0;
while (bits[lastbit]) {
bits[lastbit] = false;
lastbit++;
}
bits[lastbit] = true;
int val = 0;
for (int k = 0; k < binary_len; ++k) {
if (bits[k]) {
val += pwrs[binary_len - k - 1];

}

rho[j] = val;
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private static void fft_init(int n, double[] w,
double[] tw, int[] rho_np) {
bitrev_init(rho_np);
ufft_init(n, w);

twiddle_init(n, O, rho_np, tw, 0);
}

private static void calcError(double[] xlocal, double[] xarr) {
double error = 0.0;
for (int ¢ = 0; ¢ < xlocal.length; c++) {
double lerror = Math.abs(xlocallc] - xarr[cl);
error += lerror;
}
System.out.println("local error is " + (error/(double)(xlocal.length)));
}

public static void main(String[] args) {

if (args.length < 1) {
System.err.println("Usage: seqfft <N>");
System.err.println("where N is the problem size (power of 2)");
System.exit(-1);

}

int n = 1;

try {
n = Integer.parselnt(args([0]);
if ('(n>0&% (n&n - 1) == 0))

throw new NumberFormatException("not power of 2");

} catch (NumberFormatException e) {
System.err.println("Argument must be an integer (power of 2)");
System.exit(-1);

}

double[] data = new double[n];

n /= 2;
for (int 1 = 0; 1 < n; i +=2) {
datal[i] = (double) (i) / 2.0;

double[] old = Arrays.copyOf(data, data.length);

double[] w = new double[n];
double[] tw = new double[(2 * n)];
int[] rho_np = new int[(n)];

long t = System.currentTimeMillis();
fft_init(n, w, tw, rho_np);

// forward fft

permute(data, n, rho_np);

ufft(data, 0, n, true, w);

// inverse fft
permute(data, n, rho_np);
ufft(data, 0, n, false, w);

double ninv = 1.0 / (double) (n);

for (int j = 0; j < 2 * n; ++j) {
datalj] *= ninv;
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calcError(data, old);
long tl = System.currentTimeMillis();

System.out.println("Sequential part took " + (t1 - t) + " ms.");

calcError(data, old);

System.exit(0);

SequentiallLU_commons. java

import org.apache.commons.math3.linear.LUDecomposition;
import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.RealMatrix;

import java.util.Random;
public class SequentiallLU_commons {

public static void main(String[] args) {
if (args.length < 1) {
System.err.println("Usage: seqlu <n>");
System.err.println("\twill stat LU decomposition on a " +
"n by n matrix.");
System.exit(1l);
}

int n = 1;

try {
n = Integer.parselnt(args[0]);

} catch (NumberFormatException e) {
System.err.println("Argument must be an integer");
System.exit(-1);

Random rd = new Random();
double[][]

a
double[][] 1
double[][] u

new double[n][n];
new double[n][n];
new double[n][n];

for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
double val = Math.random();
alil[j] = val;
L[il[j] = u[il[j] = 0.0;

RealMatrix A = MatrixUtils.createRealMatrix(a);
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long tl = System.currentTimeMillis();
LUDecomposition lucalc = new LUDecomposition(A);
1 = lucalc.getl().getData();

u = lucalc.getU().getData();

long t2 = System.currentTimeMillis();

System.out.println("Sequential computation took " + (t2 - t1) + " ms.");
System.exit(0);
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